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Abstract—In this work, we present milliGait , a user identifica-
tion using gait patterns captured by millimeter wave (mmWave)
radar technology. milliGait takes into account the unique move-
ment signatures of individuals to enable privacy secured accurate
user identification. Using a Commercial-Off-the-self (COTS)
mmWave radar we have collected mmWave features, particularly
the range information and range-doppler profile features, ex-
tracted from the raw I/Q samples. To categorize people according
to their leg movement patterns, we developed a Convolutional
Neural Network (CNN) model using the mmWave features. The
two features namely the range information and the range-doppler
profile is fed into two concurrent CNN models (1D and 2D
CNN models respectively). Finally a fully-connecyed classifier is
employed to identify the subjects. We have evaluated milliGait
with 3 different subjects with an authentication accuracy of over
80%.

Index Terms—Gait Signatures, User Identification, mmWave
Sensing.

I. INTRODUCTION

Gait recognition is a biometric method that uses each
person’s distinct walking patterns to identify them. Gait recog-
nition is perfect for real-time applications since it doesn’t
require the active cooperation of the user, unlike conventional
biometric techniques like fingerprint recognition, video mon-
itoring, or facial identification. Numerous fields have taken a
keen interest in this technology, especially in security and
surveillance systems, where it allows for continuous and
contactless monitoring without violating privacy [1], [2], [3],
[4]. Compared to video-based authentication approach, one
of the main benefits of mmWave-based gait recognition is its
capacity to preserve privacy. While motion data without clear
visual features is used for mmWave radar-based gait detec-
tion, video footage can collect identifiable visual information,
which raises privacy concerns. This solves privacy issues that
frequently accompany video surveillance by guaranteeing that
people may be tracked or recognized without disclosing private
or sensitive visual information.

In healthcare, gait recognition can be instrumental in diag-
nosing and monitoring conditions affecting mobility, such as
Parkinson’s disease or arthritis. It allows for continuous, non-
invasive tracking of a patient’s movement patterns, providing
valuable insights into their physical health over time. Addi-
tionally, in personalized user experiences, gait recognition
enables smart environments that can adapt based on the
specific individual present. For instance, homes or workplaces

equipped with this technology could adjust lighting, tempera-
ture, or security settings based on who is identified. Although
there exists several works that uses mmWave-based sensing
for human gait based authentication [1], [2] however most
of these methods uses complex signal processing approach to
render human lower limb features [4].

Instead of heading for a complex signal-based feature
extraction, milliGait uses simple Convolutional Neural Net-
works (CNNs) which take raw human body reflected mmWave
signals and capture gait features for user identification. The
CNN model leverages the rich motion information from the
mmWave radar to recognize and differentiate between in-
dividuals effectively. milliGait achieves 80% authentication
accuracy in correctly identifying subjects purely on mmWave
based raw features.

II. RELATED WORKS

In recent years, the field of device-free human identification
and activity recognition using mmWave radar has gained
substantial attention [5], [6], [7], [8]. Several methods have
been proposed to improve the accuracy and robustness of
these systems, particularly for applications in activity clas-
sification [5], [8]. In this section, we discuss four key works
that leverage mmWave signals for human identification and
activity recognition, and contrast them with our approach.

In [2], the authors present a method for robustly identi-
fying individuals through gait recognition in complex indoor
environments. The approach processes radar range-Doppler
heatmaps by filtering out the background and isolating dense
regions, which are then grouped into clusters corresponding
to actual subjects or potential ghost targets. A target track-
ing algorithm is employed to associate these clusters across
multiple frames, allowing for the construction of each target’s
trajectory. Finally, an LSTM-based attention network is used to
assign different weights to the frames, enhancing the accuracy
of subject identification.

In [1] authors design a multi-person identification and
intruder detection using gait micro-doppler signatures using
mmWave radar. In multi-person scenarios, the system detects
and tracks each subject separately in the range-doppler space,
extracting their unique gait signatures frame by frame. An
open-set identification network is then trained using a large-
margin Gaussian mixture loss to learn highly discriminative
features, ensuring that the learned features of the training data



follow a Gaussian mixture distribution, with each component
representing a registered user. Similarly in [3] the authors pro-
pose a path-independent, device-free gait recognition system
that can identify an individual regardless of the path they take
while walking. The system uses location data and Doppler
spectrograms to generate a corrected velocity spectrogram that
approximates the actual velocity. It also employs an energy
normalization technique to mitigate the impact of the walking
path on the spectrogram’s energy, ensuring the recognition
process is path-independent. Using this path-independent gait
spectrogram, a convolutional neural network is applied to
extract deep features and perform the gait recognition task.

Another work MU-ID [4] utilizes range-doppler maps to
examine the users’ lower limb movements and captures unique
gait patterns, which vary in terms of step length, duration, in-
stantaneous lower limb velocity, and inter-lower limb distance.
Additionally, the system proposes an effective spatial-temporal
silhouette analysis to segment each user’s walking steps. These
steps are then identified using a CNN classifier, which further
enables user identification within the area of interest.

Unlike previous works that primarily rely on doppler sig-
natures and complex signal processing techniques to extract
features for user classification, this work takes a different
approach by leveraging both the range and range-doppler
heatmaps. These complementary data sources allow for more
comprehensive extraction of both subject location and human
body movement signatures. The raw data is then fed into
a CNN classifier for accurate user identification, offering
a more holistic and efficient solution for gait-based person
identification.

III. BACKGROUND: FMCW MMWAVE RADAR SENSING

mmWave radar operates by transmitting electromagnetic
waves with short wavelengths (1–10 mm). With its wide
bandwidth of 4 GHz, it provides a high range resolution of
approximately 4 cm, making it effective for differentiating
between subtle human movements. FMCW is a widely used
modulation technique for automotive mmWave radars [9]. The
radar transmits linear “chirps” and receives reflections from
objects in its surroundings. By processing the reflected signal,
the radar can determine the range, velocity, and angle of the
detected objects. The frequency of the chirps increases linearly
over time. When a reflected chirp, delayed by a time interval
τ , is received, it is mixed with the transmitted chirp to generate
an Intermediate Frequency (IF) signal. This IF signal is used
to calculate both the distance and velocity of the object.

A. Range Estimation

FMCW radars emit chirps with a transmission time of TC .
For an object located at a distance d, the transmitted chirp
(TX chirp) and the reflected chirp (RX chirp) are separated
by a time delay τ . The chirp’s slope S is defined as S =
B
TC

= fb
τ , where B is the chirp’s bandwidth, and fb is the

beat frequency between the transmitted and received signals.
The time delay τ is expressed as τ = 2d

c , where c is the

speed of light. Substituting this into the relationship for fb,
the object’s distance can be calculated as:

d =
c

2
· TC

B
· fb. (1)

To determine the beat frequency fb, a Fast Fourier Trans-
form (FFT) is applied to the IF signal. Peaks in the range FFT
represent detected objects, and their corresponding distances
are calculated using Equation 1.

B. Velocity Estimation

To compute the velocity of a moving object, the radar trans-
mits N chirps, each spaced by the transmission time TC . After
performing the range FFT to identify the object’s location, the
motion of a moving object results in phase changes between
successive chirps. The phase difference ∆ϕ caused by an
object moving at velocity v is given by ∆ϕ = 4πvTC

λ , where
λ is the radar’s wavelength. A second FFT, called the Doppler
FFT, is applied to the phase changes across chirps, providing
the object’s velocity.

C. Range-Doppler Map

By combining the range information from the range FFT
with velocity information from the Doppler FFT, a two-
dimensional range-doppler map is created. Each element in
the map represents the reflected signal’s power at a specific
range and velocity. This map captures both the spatial and
motion characteristics of objects within the radar’s field of
view and forms the basis for gait analysis.

D. Gait Recognition with mmWave features

The range profile, derived from the range-FFT of the IF
signal, represents the spatial distribution of reflected radar
energy as a function of distance. This profile captures key
aspects of gait, such as the spatial localization of motion and
amplitude variations from different body parts. For instance,
reflections from the torso, legs, and arms are recorded at
varying distances, corresponding to their relative positions to
the radar. The amplitude of these reflections varies with body
shape, size, which are often unique to an individual. Over time,
the temporal changes in the range profile reflect the periodic
motion of the user’s gait cycle, making it a critical feature for
characterizing walking behavior.

The range-doppler map, on the other hand, combines spatial
and velocity information together. The doppler dimension
reveals unique movement patterns of the arms and legs during
a gait cycle. Additionally, by associating specific doppler shifts
with corresponding ranges, the range-doppler map provides
a detailed segmentation of motion dynamics, distinguishing
faster-moving legs from the relatively slower torso.

Thus both the range profile and range-doppler features
enable robust human gait-based user identification. The range
profile emphasizes spatial characteristics, while the range-
doppler map integrates the velocity information, creating a
comprehensive representation of gait. This synergy ensures
distinctiveness in identifying individuals, robustness against
variations in walking conditions, and consistency over time.



(a) U1-Front (b) U1-Back (c) U1-Left (d) U1-Right

(e) U2-Front (f) U2-Back (g) U2-Left (h) U2-Right

(i) U3-Front (j) U3-Back (k) U3-Left (l) U3-Right

Fig. 1: Patterns in range profile for front, back, left, right
movements (from left to right) across 3 users (from top to
bottom)

IV. METHODOLOGY

A. Data Collection

We create the gait dataset using an IWR1843BOOST [10]
mmWave sensor with DCA1000EVM data capture board [11].
The sensor was positioned to capture full-body movement at
a height of 2.5 feet and facing towards the subject who is
performing the activity in an empty room. Simultaneously
with mmWave data recording, we captured video footage to
aid in labeling the radar data. A timestamp was recorded at
the start of each session to synchronize mmWave data and
video. As mmWave data lacks inherent labels, the video served
as a reference for later annotation of the feet movements
(like “left-leg-up”, “right-leg-up”, etc.). A Python script was
used to overlay timestamps on the video footage, aiding in
precise labeling. This script parsed video frames and added
a timestamp to each frame. The output was a timestamped
video file, enabling us to map gait cycle moments to specific
mmWave data points.

TABLE I: Description of Features

Feature Description
Datetime Precise date and time of each moment within the gait cycle
Activity Indicates which leg is raised (e.g., l for left, r for right)
User The name or identifier of the person
Type Describes movement type (e.g., front-back or left-right)
Direction Specifies direction of movement of the person (e.g., front or back)

Using the timestamped video, we reviewed each recording
to label distinct gait activities, creating a structured CSV file
with the columns as shown in TABLE I:

To train the model on diverse gait patterns, data collection
was repeated session wise for two movement types. (1) Front-
Back Movements: User walked toward and away from the
sensor, and (2) Left-Right Movements: User walked side-
to-side relative to the sensor. Each session involved the same
steps of video recording, mmWave data capture, timestamp
synchronization, and labeling in the CSV file.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2: Range-doppler Patterns for Front, Back, Left, Right
Movement (from top to bottom) across three users (from left
to right).

B. Data Preprocessing

The raw ADC data from the IWR1843BOOST sensor are
first organized into a multi-dimensional array with shapes
number of chirps (128), number of range bins (256), number of
virtual antennas (3 TX & 4 RX). These data cubes represent
the radar readings across different time intervals, capturing
both the range and velocity of objects detected by the sensor.
The data preprocessing pipeline extracts essential information
from raw ADC data, converting it into a meaningful set of
data that includes spatial and velocity information for detected
human subjects. The key features extracted from the pipeline
are as follows.

1) Range Information: The range informmation is an 1D
Feature Vector of size 256, representing the aggregated range
information across multiple channels and chirps. This feature
captures the intensity of reflections at different range bins,
providing insight into the distance and reflectivity of objects.
Fig. 1 represents the range profile of all the users in the
different directions of motion.

2) Range-doppler Map: This feature provides information
on the distribution of the range and doppler (velocity) across
different bins, showcasing how different distances (range bins)
are associated with various velocities (doppler bins), which
helps identify moving subjects, their range, and their relative
velocity. Fig. 2 represents the range-doppler patterns of the
different users in the different directions of motion.



Fig. 3: Model Architecture

C. Synchronization with Annotated Data

Finally the processed data was aligned with annotated
timestamps in the CSV file. This synchronization annotates
the mmWave data to it’s corresponding user and the direction
of gait performed at the time of recording the data.

D. Model Architecture

The model consists of two primary branches for feature
extraction: 2D Convolutional Network (cnn2d) for 2D range-
doppler heatmaps and 1D Convolutional Network (cnn1d)
for 1D range profile features. The CNNs extract hierarchical
spatial and sequential features from the sensor data. After
feature extraction, the output from both CNN modules is
passed to the user classifier network for final classification.
The classifier consists of fully connected layers with ReLU
activation and dropout to avoid overfitting. The final classifi-
cation layer uses softmax activation to output the probability of
the data belonging to one of the 3 possible subjects considered
in this work. Dropout layers are included in the architecture
to prevent overfitting and improve generalization. The model
architecture is shown in Fig. 3.

V. EVALUATION

In this section we evaluate milliGait using the proposed 1D
and 2D CNN-based model architecture, assessing its effec-
tiveness in identifying different users based on gait patterns.
In Fig. 4 we show the convergence curves for accuracy and
loss during training. As shown in Fig. 4(a), we observe
steady improvement in accuracy across epochs, with the model
stabilizing near the final accuracy value as training progresses.
Similarly, the loss convergence as shown in Fig. 4(b) il-
lustrates that the model’s loss declines smoothly, reflecting
effective learning without overfitting. Fig. 5(a) reveals the
model’s classification performance on different users in terms
of confusion matrix. The model achieves strong accuracy in
user identification, showing minimal misclassification among
users. However, we note occasional misclassification between
specific users with similar gait patterns, as shown by the
overlaps in the off-diagonal elements in the matrix. Fig. 5(b)
provides the final overall accuracy and F1-score, with the
model achieving high accuracy and F1 score for all the users

(a) (b)

Fig. 4: (a) Accuracy convergence, (b) Loss convergence

(a) (b)

Fig. 5: (a) Confusion matrix of user identification, (b) Overall
Accuracy and F1-Score

during testing. The model achieves over 80% accuracy for all
the users. These metrics confirm the robustness of our CNN-
based approach to successfully identify users in a small scale.

VI. CONCLUSION AND FUTURE WORKS

In conclusion our proposed milliGait with combined dis-
tinct CNNs based model for processing radar data improved
classification accuracy, achieving an accuracy and F1 score of
over 80% on all users. Our evaluation also revealed that User
1 and User 2 had slightly lower accuracy than User 3, possibly
due to User 1 and 2 having similar gait patterns, also evident
from the confusion matrix. Finally we conclude our work with
the following future directions.

1) Expanding the Dataset with Additional Users: Collect-
ing data from a more diverse set of users would improve the
model’s generalizability and robustness in identifying unique
gait signatures as real world applications would require the
model to classify more number of users.

2) Enhanced Feature Extraction from ADC Data: Develop-
ing advanced feature extraction methods to capture additional
aspects from ADC data, such as micro-movements or complex
doppler signatures, would provide the model with richer in-
formation. Such features could yield more distinctive patterns
and improve classification precision.

3) Automating Video Annotations: To reduce manual labor
and improve efficiency, future work could involve implement-
ing automated video annotation tools. Leveraging computer
vision techniques to label frames automatically would stream-
line the preprocessing phase, allowing for quicker and more
scalable data preparation.

4) Exploring Different Baselines: In future we will be eval-
uating our model with other baseline approaches like [2], [1]
to understand it’s effectiveness compared to other approaches.
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