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Abstract—In recent years, the detection of dangerous driving
has been a matter of great importance. However, finding a
practical yet minimally intrusive solution has proven to be
challenging, as current technologies heavily rely on visual features
or physical proximity. To address this issue, we leverage mmWave
radar exclusively to identify dangerous driving behaviors. By
analyzing unique patterns of range-doppler caused by nine
typical dangerous driving actions, we present a demonstration
of our method called mmDrive . This approach collects real-time
mmWave data and utilizes a CNN classifier to detect instances
of dangerous driving and classify the specific action among the
nine categories. Through extensive experiments involving five
volunteer drivers in real driving conditions, we have observed
that our system can differentiate between dangerous driving
actions with an average accuracy of 97%(±2%).

I. OVERVIEW

According to the World Health Organization (WHO), ap-
proximately 1.2 million people die each year worldwide as a
result of road accidents, with dangerous driving being a major
contributor, accounting for around 45% of these incidents.
Although significant technological advancements have been
made in monitoring dangerous driving in real-time, current
vision-based methods face challenges regarding privacy con-
cerns, particularly in public and shared vehicles. Moreover,
the accuracy of detection is influenced by various factors
like lighting conditions and camera orientation. Similarly,
wearable-based approaches are difficult to apply universally
since the characteristics observed in one age group may not
seamlessly apply to another age group. Additionally, ensuring
that drivers consistently use the necessary wearable devices is
not a simple task.

The rise of 5G technology, which is built upon mmWave
communication, has brought about a significant shift in the
paradigm. With the integration of mmWave hardware into a
wide range of devices, this technology has become pervasive.
A mmWave radar, capable of measuring various parameters
like distance and velocity, has been utilized to address di-
verse problems such as human activity recognition, gesture
recognition, vital sign detection, and even voice reconstruction,
all involving estimation of positioning and movement. In this
demonstration, we utilize a Frequency-modulated continuous-
wave (FMCW) mmWave radar to monitor dangerous driving
behaviors from the perspective of the driver. When distracted
driving is detected, immediate actions can be taken using
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Fig. 1. Dangerous driving activities – (a) Nodding, (b) Yawning, (c) Steering
anomaly, (d) Drinking, (e) Talking to the rear passenger, (f) Picking a drop,
(g) Fetching from the dash, (h) Using mobile, (i) Talking sideways

our approach, such as warning the driver or notifying nearby
vehicles with appropriate messages.
Advantages over Existing Approaches: Utilizing mmWave
sensing for monitoring dangerous driving offers several ad-
vantages over existing approaches, including the following:
(i) Direct Monitoring: mmWave sensing enables direct mon-
itoring of a driver’s movements, unlike existing methods
that rely on indirect observations such as vehicle states and
kinematics. (ii) Privacy-Friendly: Unlike cameras, mmWave
sensing minimizes privacy invasion as it doesn’t capture visual
features of the environment. (iii) Device-Free: Unlike wear-
ables, mmWave sensing doesn’t require the driver to wear or
carry any additional device. It measures passively, allowing
the driver to move freely without any restrictions. (iv) Micro-
Movement Detection: mmWave sensing can detect subtle
movements like yawning, which is crucial for determining a
driver’s sleepy state. Despite these advantages, there are still
challenges that our proposed method needs to overcome in
order to be practically viable.
Challenges: Monitoring activities within a moving vehicle
using a mmWave radar presents several challenges that need to
be addressed for an effective system: (i) Noisy Environment:
The interior of a car is a noisy environment where various
movements from objects inside the car and external factors
like road and traffic conditions can directly impact mmWave
signals. (ii) Multiple Passengers: Cars can have multiple
passengers, but it is essential to focus on monitoring the
specific movements of the driver to detect dangerous driving



scenarios. Therefore, separating the driver’s movements from
others is crucial to ensure accurate monitoring of dangerous
driving behaviors.

We identify three actions related to driver fatigue/drowsiness
(nodding, yawning, steering anomaly) and six actions indicat-
ing driver distraction (drinking/eating, turning back, picking
up/dropping objects, fetching forward, speaking on mobile,
turning heads to talk to passengers). These nine actions (shown
in Fig. 1) are considered potentially dangerous and should
be avoided while driving. Using a commercially available
FMCW mmWave radar, we analyze signal features such as
range doppler, range profile, and noise profile to distinguish
these activities from regular driving actions. In Fig. 2, we
show the variation in the range-doppler data across these 9
dangerous activities. For the classification of these activities,
we have developed a Fused-CNN-based driver behavior model
for this purpose. To replicate our findings, we have made our
implementation and a subset of our dataset available as open-
source on GitHub1. Through extensive deployment and field
experimentation, we collected 20 hours of driving data from 5
users using three different vehicles (two sedans and one SUV).

II. SYSTEM DESIGN

The proposed method, mmDrive , utilizes a combination
of FMCW mmWave radar measurements and IMU sensor
data to monitor and classify dangerous driving behaviors.
The processing steps involved in the formulation of mm-
Drive include pre-processing and a classification pipeline. In
the pre-processing step, feature frames are concatenated to
capture the temporal variations, and a min-max scaler is
applied to normalize the features. The classification pipeline
incorporates a Fused-CNN architecture (shown in Fig. 3)
that extracts features from range-doppler, range profile, and
noise profile information. The extracted features are then
passed through the FE Network to obtain embeddings, and
subsequent classifiers, namely the Dangerous Driving Behav-
iors (DDB) Classifier and Dangerous vs. Normal Driving
(DVN) Classifier, are used to classify different driving actions.
Lazy inferencing is implemented to optimize computational
resources by selectively querying the DDB Classifier based
on the output of the DVN Classifier. The proposed method
has been evaluated using a dataset collected from driving
experiments with multiple users and vehicles. . An elaborate
description of the technique is included in [1].

III. CONCLUSION

In this demonstration, we emphasize the importance of
selecting appropriate features from the measurements of a
single commercially available mmWave FMCW radar. The
hardware setup of mmDrive is shown in Fig. 4(a). Our so-
lution is compact, pervasive, and privacy-preserving, as it
operates entirely on the device without relying on external
systems. As shown in Fig. 4(b), the accuracy of mmDrive in
detecting critical driver activities associated with dangerous

1https://github.com/arghasen10/mmdrive.git

Fig. 2. Range-doppler heatmaps for driving actions
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Fig. 3. Fused-CNN Model Architecture

driving scenarios is demonstrated to be greater than 95%.
We conduct extensive evaluations of mmDrive in various real-
world environments. The positive results obtained from these
evaluations strongly indicate that mmDrive has the potential to
save lives and contribute to on-road safety in diverse situations.
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Fig. 4. (a) mmDrive Setup, (b) Confusion matrix for all the dangerous driving
behaviors using the proposed Fused-CNN classifier


