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A B S T R A C T

Detecting risky driving has been a significant area of focus in recent years. Nonetheless, devising
a practical, effective, and unobtrusive solution remains a complex challenge. Presently available
technologies predominantly rely on visual cues or physical proximity, complicating the sensing.
With this incentive, we explore the possibility of utilizing mmWave radars exclusively to
identify dangerous driving behaviors. Initially, we scrutinize the attributes of unsafe driving
and pinpoint distinct patterns in range-doppler readings brought about by nine common risky
driving manoeuvres. Subsequently, we create an innovative Fused-CNN model that identifies
instances of hazardous driving amidst regular driving and categorizes nine distinct types of
dangerous driving actions. After conducting thorough experiments involving seven volunteers
driving in real-world settings, we note that our system accurately distinguishes risky driving
actions with an average precision of approximately 97% with a deviation of ±2%. To underscore
the significance of our approach, we also compare it against established state-of-the-art methods.

. Introduction

The World Health Organization (WHO) has reported that a concerning 1.2 million individuals lose their lives annually on a
lobal scale due to road accidents [1]; notably, approximately 45% of these accidents are attributed to dangerous driving. It is
orth highlighting that substantial technological advancements have been made to monitor hazardous driving behaviors actively.
oth commercial efforts like Advanced Driver Assistance Systems (ADAS) [2] and a plethora of research studies [3,4] contribute to a
ell-explored domain. For example, contemporary trends emphasize the significance of computer vision [5] and wearable devices
ounted on the body [6] for monitoring driving conduct. However, privacy concerns, especially for public and shared vehicles,
ose challenges for vision-based techniques. Additionally, the accuracy of detection is influenced by various factors such as lighting
onditions and camera orientation [7]. Similarly, wearable-based strategies struggle with generalization as behavioral patterns from
ne age group might not seamlessly apply to another [8]. Furthermore, ensuring drivers consistently use necessary wearable devices
s not straightforward. This leads us to a fundamental query: How can we create a comprehensive and unobtrusive system to monitor
angerous driving, one that the community can widely embrace? Additionally, can an alternative approach effectively tackle this issue? We
mbark on addressing these intriguing questions.

Recently, a notable shift has arisen towards adopting 5G technology, which is built upon the foundation of millimeter wave
mmWave) communication [9]. With an increasing influx of devices into this ecosystem, mmWave hardware is being integrated
nto a wide array of devices, establishing this technology as a widespread platform. This observation has sparked a crucial
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Fig. 1. A use-case scenario of mmDrive .

inquiry: Is it feasible to utilize the properties of mmWave to capture a driver’s dangerous driving behaviors? A mmWave radar [10] can
adeptly measure various parameters like the distance and velocity of objects. This concept has been applied to address a diverse
range of challenges, including recognizing human activities [11], interpreting gestures [12], detecting vital signs [13], and even
reconstructing voice [14], involving estimations of position and movement. Based on this premise, we introduce mmDrive , a solution
that employs a Frequency-modulated continuous-wave (FMCW) mmWave radar to monitor hazardous driving behaviors from the driver’s
perspective. Upon detecting instances of distracted driving, mmDrive can promptly take actions such as alerting the driver or notifying
nearby vehicles with relevant messages. As demonstrated by the use-case scenario in Fig. 1, mmDrive could play a crucial role in
saving lives both in and outside a vehicle. As soon as a case of distracted driving is detected, mmDrive can be used to take immediate
action, such as warning the driver or notifying nearby vehicles with appropriate messages.
Gains Compared to Current Approaches: We additionally note that employing mmWave sensing for the surveillance of hazardous
driving holds several benefits when juxtaposed with prevailing cutting-edge methods. These advantages encompass the subsequent
points. (i) Direct monitoring of a driver’s actions is enabled by mmWave sensing, obviating the need for indirect inferences like
vehicle conditions and kinematics. (ii) Unlike cameras, mmWave sensing maintains a commendable level of privacy as it abstains
from capturing visual aspects of the surroundings [15]. (iii) Unlike wearables, mmWave sensing operates unobtrusively without
necessitating any device to be worn or carried, permitting passive measurement without impeding the driver’s natural movements
and routines. (iv) Micro-movements such as yawning, crucial for discerning a drowsy state in a driver, can also be detected using
mmWave sensing [16]. (v) The ability of mmWave to penetrate objects that could potentially obstruct light, like clothing [17],
ensures its utility even when the driver is wearing a face mask. Nevertheless, alongside these merits, the practical implementation
of mmDrive must surmount a set of challenges.
Challenges: When considering the utilization of a mmWave radar for overseeing activities within a moving vehicle, the road
ahead is not devoid of complexities. Several challenges demand resolution to establish an effective system, as delineated below.
Initially, the internal setting of a car is inherently noisy. Myriad movements stemming from objects within the vehicle, coupled
with road and traffic conditions, can directly influence mmWave signals. Secondarily, a car might accommodate multiple occupants.
However, exclusively, the driver’s motions hold relevance for monitoring perilous driving circumstances, necessitating the separation
of solely the driver’s actions. Tertiary, the signatures captured by the FMCW radar arising from abrupt jolts, like encounters with
road irregularities and potholes, exhibit substantial pattern fluctuations. As these patterns do not bear relevant information, their
exclusion becomes imperative.
Our Contributions: In light of the aforementioned hurdles, this manuscript introduces an end-to-end system that employs mmWave
sensing for unobtrusive, real-time monitoring of risky driving behaviors. In distinction from existing endeavors [18] that employ
acoustic sonar to detect a limited range of basic driving behaviors exclusively, we encompass a spectrum of 9 intricate macro and
micro-level actions that could potentially lead to fatal outcomes while driving. The contributions presented in this document unfold
as follows.
(1) Definition of Dangerous Driving and Identification of Detectable Signatures. We establish definitions for three actions
often linked to driver fatigue or drowsiness (specifically, nodding, yawning, steering anomaly), and six actions indicative of driver
distraction (namely, drinking/eating, looking back, picking up/dropping items, forward fetching from dashboard, talking on a mobile phone,
engaging with passengers). Collectively, these nine actions harbor potential danger and warrant avoidance while operating a vehicle.
Utilizing a solitary Commercial Off-The-Shelf (COTS) FMCW mmWave radar, we assess an array of signal attributes encompassing
range-doppler, range profile, and noise profile to distinguish these behaviors from typical driving actions. We underscore the necessity
of amalgamating spatial and temporal fluctuations in these attributes to discern dangerous driving behaviors accurately.
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(2) Creation of an end-to-end process for classifying driving behaviors in the presence of noise. Empirical tests in real-world
scenarios under both rural and urban road conditions unveil that mmWave data contends with signal interference arising from
adverse road conditions like bumps and potholes. To mitigate such disturbances, we exploit data from IMU sensors. Additionally,
we introduce an innovative Fused-CNN classifier to ascertain hazardous driving versus regular driving. Notably, mmDrive not only
discriminates between dangerous and normal driving but also distinguishes among the aforementioned nine distinct instances of
dangerous driving conduct. To curtail computational demands and energy consumption, mmDrive exclusively classifies the potentially
perilous driving actions upon detecting a case of hazardous driving.
(3) Implementation and Assessment with Real-world Driving Data. We put our proposed driver behavior model based on the
Fused-CNN into action and compared it with a random forest and a VGG-16-based baseline. Furthermore, we compared with an
acoustic-based method [18] to underscore the enhanced precision of mmWave sensing. To replicate our outcomes, we have made our
implementation and the real-world driving dataset publicly accessible at: https://github.com/arghasen10/mmdrive.git. Employing
a meticulous device deployment and field trials, we amassed 60 hours of driving data (comprising mmWave readings, IMU inputs,
and dashcam footage for reference), approximately three times the previously collected version, from 7 individuals operating three
distinct vehicles — three sedans, one SUV, and one Minivan, under both rural and urban road conditions.

In summary, we have significantly improved upon the previous publication by implementing key enhancements in this
version [19]. We have expanded our driving dataset by approximately threefold, covering diverse real-world scenarios, including
rural, suburban, and urban settings. This contrasts with the earlier dataset [19] that was limited to campus road dynamics, thereby
enhancing the reliability of our findings. The modeling pipeline has also evolved due to the enlarged dataset and consideration
of diversity in the driving signatures. We now divide the data based on timestamps, allocating 70% for training and the rest for
testing, rectifying earlier data leakage issues and providing a more accurate representation of real-world driving. Our evaluation
now includes comprehensive insights into performance on different road types and car models, the impact of IMU-based denoising,
as well as real-time performance latency.

The rest of the paper is organized as follows. In Section 2, an examination of related works provides a context for the novelty of
the proposed approach. Moving forward, Section 3 presents a thorough introduction to mmWave sensing and outlines the pilot
experiments undertaken as part of this research. Drawing insights from these experiments, Section 4 elaborates on the chosen
methodology and the underlying system architecture. The subsequent Section 5 delves into the implementation of mmDrive on COTS
mmWave radar, followed by a detailed analysis of the module’s performance compared to the state-of-the-art baselines. Ultimately,
Section 6 encapsulates the paper with a conclusion summarizing the findings and hints at the potential future direction of work.

2. Related work

The existing literature concerning the surveillance of hazardous driving behaviors has expanded into various avenues. In this
context, we provide an overview of the most notable works in each of these avenues.
Approaches Involving Orientation and Abnormality: These earlier methods [20,21], focus on evaluating the vehicle’s orientation using
a range of parameters, including position, velocity, acceleration, and more. Subsequently, these parameters are utilized to indirectly
observe risky driving behaviors. The underlying premise is that deviations from normal driving patterns manifest as irregularities
in these parameters, leading to the inference of hazardous driving actions. However, it is important to note that various factors
outside of the driver’s control, such as weather conditions and traffic congestion, can also result in irregular driving patterns. These
patterns may not necessarily indicate dangerous driving behaviors.
Approaches Centered on Vision: Vision-centered methodologies [22,23] harness the capabilities of computer vision technology,
utilizing various visual sources including RGB cameras [24], thermal imaging [25], and Infrared (IR) cameras [26]. These approaches
are designed to monitor the driver’s actions directly. Images captured within the surrounding environment undergo processing to
extract motion details, encompassing facial cues like eye movements, talking, and yawning, as well as movements of other body
components [27] like head and hand gestures. Such behaviors serve as indicators of inattentive or perilous driving conduct. However,
it is worth noting that these vision-based methodologies compromise privacy [28], thereby limiting their viability, particularly for
public vehicles, as a practical solution.
Approaches Based on Wearables: Recognizing the wide-reaching presence and efficacy of wearable gadgets, researchers have harnessed
these devices to detect body kinematics and other distinctive bodily markers. Variations within IMU (Inertial Measurement Unit)
data, EEG (ElectroEncephaloGram) signals [29], heart rate, and more encapsulate diverse signatures specific to different activities.
Consequently, these markers are employed to evaluate unusual and hazardous driving behaviors. Nonetheless, it is important
to note that these signatures frequently diverge across diverse demographic groups (such as varying age brackets), introducing
complexities in designing a universally applicable system. Moreover, these wearables necessitate active user engagement and may
impose intrusive implications (such as EEG sensors attached to the body), potentially disrupting individuals’ daily routines.
Approaches Involving Acoustics: Researchers have also delved into the realm of acoustics to explore distracted and hazardous driving
situations. This involves the exploitation of phenomena like doppler shifts [30,31] and FMCW chirps [18] to gather insights.
However, the presence of ambient noise significantly affects the accuracy of such acoustic-based sensing [32]. Even with widespread
devices like smartphones being employed for acoustic sensing, it is crucial to recognize that distinct devices exhibit diverse sensitivity
profiles [33] towards audio signals, which can impact the efficacy of these systems. Additional variables, including the placement
and orientation of the sensor, and the intricate matter of privacy, also raise considerations with regard to acoustic sensing.
3
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Fig. 2. Working principle of an FMCW radar — (a) Radar Placement (b) Frequency of multiple chirps vs. time.

3. Background and observations

This section introduces the technical elements of an FMCW mmWave radar that are pertinent to this study. Following that, we
detail our findings regarding dangerous driving behaviors that can be associated with these factors.

3.1. Preliminaries

In a typical FMCW radar, a linear chirp is employed for transmitting continuous periodic signals. These signals interact with
obstacles in the surroundings and get reflected. Subsequently, the radar engages in a process called dechirping, achieved by mixing
the transmitted and reflected signals. The outcome of this process is an Intermediate frequency signal (IF), which then undergoes a
series of procedures to extract necessary information.
Determining Subjects Position: When considering a transmitted chirp (𝑇𝑋) and its corresponding received chirp (𝑅𝑋), along with
a transmission duration 𝑇𝐶 , the distance 𝑑 of the subject causing the reflection from the radar can be computed as follows:

𝑑 = 𝑐
2
⋅
𝑇𝐶
𝐵

⋅ 𝑓𝑏 (1)

In this equation, 𝑓𝑏 denotes the beat frequency, which represents the difference in frequency between the 𝑇𝑋 and 𝑅𝑋 chirps.
The value of 𝑐 corresponds to the speed of light, and the fraction 𝑇𝐶

𝐵 represents the slope 𝑆 of the FMCW chirp.
To begin, a Range Fast Fourier Transform (Range-FFT) is initially applied to the IF signal to isolate all the reflectors, which are

identified by their frequency peaks. Subsequently, Eq. (1) is utilized to calculate the distance of a reflector. Ultimately, the radar
records the received power at various range bins, generating a one-dimensional array representing the range profile.
Estimating Subject Movements: In the context of an FMCW radar, a series of 𝑁 chirps are transmitted in a continuous manner,
each spaced by a transmission time of 𝑇𝐶 . When the subject is in motion, the range-FFT associated with these chirps will exhibit
peaks in their exact positions, albeit accompanied by a phase change. Assuming a velocity of 𝑣 at which the subject is moving and
denoting 𝜆 as the wavelength, the observed phase difference between two consecutive 𝑅𝑋 chirps that corresponds to a motion of
𝑣 × 𝑇𝐶 can be expressed as follows:

𝛥𝜙 =
4𝜋(𝑣 × 𝑇𝐶 )

𝜆
(2)

Subsequently, a second FFT, referred to as the Doppler-FFT, can be applied to these 𝑁 phases to analyze the subject’s motion.
The radar then captures information about both range and velocity within a 2D matrix termed a range-doppler heatmap.
Evaluating Noise Profile Characteristics: Doppler data across various range bins is utilized to compute the noise profile. This profile
maintains the same structure as the range profile, but it is extracted from the maximum Doppler bin, where the most significant body
movements occur.

Our methodology, mmDrive , makes use of the range profile, range-Doppler heatmap, and the noise profile to capture discernible
patterns in driver activities. To achieve this, we conduct a preliminary investigation involving diverse driver behaviors, drawing
insights from these key factors.
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3.2. Pilot study

The initial challenge in devising mmDrive revolves around defining the scope of irregular and hazardous driving actions. Drawing
on existing definitions of dangerous driving actions as outlined in literature [34], we expand these definitions to encompass a broader
spectrum of intricate activities that serve as indicators of perilous driving. Our primary classification of these activities comprises
two fundamental categories: (1) actions arising from fatigue or drowsiness and (2) actions arising from distraction.
Actions arising from Drowsiness: Within this category, actions typically emerge when a driver is experiencing fatigue or
drowsiness, which could potentially lead to accidents. Some of these actions include:

• Nodding : When a driver feels drowsy or on the brink of falling asleep, they often exhibit rapid, cyclic bowing motions of the
head in both the forward and backward directions (refer to Fig. 3(a)).

• Yawning: A common manifestation of driver fatigue is yawning. Yawning involves the sequential movements of widely opening
the mouth during inhalation, lifting the head due to the reactive force during exhalation, and ultimately lowering the head to
its original position (refer to Fig. 3(b)).

• Steering Anomalies: Typically, a vigilant driver navigates turns smoothly and consistently. However, a drowsy driver might
refrain from adjusting the steering wheel for prolonged durations due to drowsiness. As the vehicle drifts laterally, the driver
may abruptly turn the wheel to correct the course, resulting in distinctive movement patterns that are absent during regular
driving (refer to Fig. 3(c)).

Actions Arising from Distractions: The category of distracted driving encompasses behaviors that indicate a lack of concentration
on driving, potentially leading to hazardous situations. Below, we outline several such activities that mmDrive aims to identify:

• Eating or Drinking: Consuming food or beverages while driving often involves a minor forward inclination followed by retrieving
items. In this scenario, one hand may briefly leave the steering wheel to pick up and consume the item (refer to Fig. 3(d)).

• Looking Back: A driver might turn their attention towards rear passengers, check items in the backseat, or attend to children
seated behind them. This diverts focus from driving and usually entails head-turning and upper-body twisting (refer to
Fig. 3(e)).

• Retrieving Dropped Items: A driver can become distracted when attempting to retrieve a fallen item from the car floor while
driving. This action generally involves moving the hand and upper body downward (refer to Fig. 3(f)).

• Fetching Objects Forward: Drivers might reach out for something placed on the car dashboard while driving. This action usually
requires leaning forward along with relevant hand movements (refer to Fig. 3(g)).

• Using Mobile Phone: The use of mobile phones is a well-known source of distraction. A driver might answer a call, send a text,
or engage with an app by raising the mobile phone (refer to Fig. 3(h)).

• Conversing with Front Passenger: Engaging in conversation with the front-seat passenger can also divert the driver’s attention
(refer to Fig. 3(i)). This typically involves head-turning and mouth movements as the driver speaks.

Other Miscellaneous Movements: Apart from the previously discussed movements, there are additional factors in the vehicle
environment that can introduce movements, such as road bumps. Although these movements do not carry pertinent information
about dangerous driving, their patterns can be significant enough to confuse the classification model. Consequently, it is imperative
to detect and filter out such movements to ensure accurate classification.

It is important to note that the highlighted movements associated with the aforementioned cases are not momentary but have a
brief duration. Subsequently, we delve into the distinctive characteristics observed for the mentioned events. For each scenario, to
capture these characteristics, we position an AWR6843ISK1 mmWave FMCW radar on the car’s dashboard in front of the driver, as
depicted in Fig. 2(a).

3.2.1. Analysis of range-doppler heatmap
The range-doppler data is presented as a 2D image, where the x-axis corresponds to the range (spanning 32 out of the 64 available

indices, following the AWR6843ISK specifications), the y-axis represents the Doppler speed, and the contained value indicates the power
magnitude for the velocity across various range and Doppler bins. In our setup, the typical distance between the driver and the
mmWave sensor is approximately 0.6 to 0.8 m, translating to range bins between 6 and 16. As a result, higher power values are
observed within this range, as illustrated in Fig. 4.

For bodily movements like reaching forward, picking up items, nodding, looking back, etc., the driver engages in specific
movements, maintains that posture for several seconds, and then returns to a normal position. During such activities, we notice that
as the driver initiates the action, the Doppler frequency shifts upwards (or downwards, contingent upon the movement direction).
Upon reverting to the standard position, the Doppler frequency shifts downward (or upward, depending on the movement sequence)
before eventually returning to zero as the activity concludes. This pattern results in an evident circular configuration within the
range-doppler heatmap for these actions, as depicted in Fig. 4.

In instances involving sudden steering changes, such as a steering anomaly, the driver’s abrupt manoeuvring of the steering wheel
leads to a rapid alteration in the range-doppler heatmap across various range bins. In contrast, activities like yawning, drinking,
or using a mobile phone generally entail fewer bodily movements while driving. Consequently, the variations in the range-doppler
exhibit a lower magnitude in power values.

1 https://www.ti.com/tool/AWR6843ISK (Accessed: June 7, 2024).
5

https://www.ti.com/tool/AWR6843ISK


Pervasive and Mobile Computing 103 (2024) 101949A. Sen et al.
Fig. 3. Dangerous driving activities — (a) Nodding, (b) Yawning, (c) Steering anomaly, (d) Drinking, (e) Talking to the rear passenger, (f) Picking a drop, (g)
Fetching from the dash, (h) Using mobile, (i) Talking sideways.

Fig. 4. Range-doppler heatmaps for driving actions.

3.2.2. Analysis of range-doppler, range profile, and noise profile for different drivers
To delve deeper into the observed variations, we present the mean distribution of the range-doppler, range profile, and noise

profile for distinct driving actions performed by two different drivers in Fig. 5. Analyzing Figs. 5(a) and 5(b), it becomes evident that
actions such as yawning, using a phone, conversing with the person on the left (adjacent seat), or drinking exhibit lower variation,
as indicated by the denser distribution within the interquartile range. In contrast, for other driving actions, the distribution tends
to be less dense around the median, signifying notable macro body movements made by the driver.

Furthermore, Fig. 5(c) showcases the distribution of the range profile across diverse driving actions. The variation across activities
is relatively less pronounced. However, the vertical separation between the medians of the range profiles for the two drivers is
considerably noticeable, attributable to disparities in driver height, seating posture, and position.

3.2.3. Analysis of different movements over time
Continuing our investigation, we proceed to analyze the influence of distinct movements and their corresponding signatures over

time. This assessment encompasses even the effects of abrupt motions due to road bumps, which we monitor through an IMU sensor
positioned on the car dashboard. The 𝑧-axis of the IMU’s accelerometer exhibits a peak during road bumps, indicating the extent
of the induced movement. Fig. 6 displays the mean values of range-doppler, noise profile, and IMU data over each second across a
three-minute span.
6
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Fig. 5. Variation in the mean of (a) range-doppler, (b) noise profiles, and (c) range profiles across different driving actions for two users.

Fig. 6. Variation in the IMU data and radar measurements.

The depicted figure unveils that every activity exhibits its own temporal duration and mean value. For instance, yawning occurs
briefly and results in a low mean value (close to the mean during standard driving) within the range-doppler. When a driver utilizes
a phone, the behavior spans a duration similar to normal driving, barring instances where substantial body movements transpire,
like picking up the phone or adjusting the hand from the steering. Conversely, a steering anomaly endures for an extended period,
featuring significant mean variations compared to normal driving. This insight underscores that each driving behavior etches its
distinct signature within the range-doppler or noise profile, accompanied by a unique time frame.

Transitioning to the IMU data, it becomes apparent that while the driver enacts these activities, the fluctuations are not
particularly significant. Nonetheless, the IMU data registers a peak when encountering a road bump (around the 170th second
in Fig. 6). Interestingly, this peak coincides with peaks in the mean values of both the range-doppler and noise profile data. This
observation underscores the direct impact of road bumps on mmWave measurements.

These findings underscore the individuality of each driving behavior in terms of both spatial and temporal variations. Conse-
quently, an effective classification of driving behaviors necessitates the consideration of both spatial and temporal variations within
he feature space. Simultaneously, instances involving road bumps need to be effectively addressed.

.2.4. Analysis of driving behavior distribution
By evaluating the mean values of range-doppler, range profile, and noise profile, the viability of classifying driving behaviors

an be assessed. The range-doppler heatmap is structured as a 16 × 64 2D matrix, representing 64 range bins and 16 doppler bins.
In contrast, both the range profile and noise profile take the form of 1D arrays, each comprising 64 elements to represent 64 range

bins. Consequently, a total of (16 × 64) + (64 × 2) = 1152 dimensions are implicated. We apply a T-distributed neighbor embedding
(t-SNE) based dimensionality reduction technique to condense this higher-dimensional (1152) space into a 2D space, allowing us
7
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Fig. 7. Distributions of normal driving with other dangerous driving actions in two-dimensional feature space.

to visualize the separation between each hazardous driving action and normal driving behavior. The outcome, as demonstrated in
Fig. 7, reveals that hazardous driving actions involving pronounced bodily movements are distinctively discernible from regular
driving behavior. Nonetheless, some overlap can be observed in scenarios such as normal driving and less substantial activities like
using a phone or conversing with a passenger.

The principal takeaways from this analysis can be summarized as follows:

• Range-doppler, noise profile, and range profile exhibit distinct patterns across diverse driving actions and drivers.
• Each driving action leaves behind a unique signature upon completion.
• Features characterizing hazardous driving actions with micro-body movements tend to share similarities with normal driving

behavior.
• Real-world driving conditions, including road bumps, can introduce variations within the feature space, potentially compli-

cating model predictions.

Building on these insights, our subsequent step involves the development of mmDrive for effectively classifying distinct driving
behaviors.

4. Methodology

A broad overview of the procedural stages comprising the development of mmDrive is presented in Fig. 8. In this methodology, an
FMCW radar captures measurements tied to the driver’s bodily movements, while an IMU sensor records mobility patterns specific
to the vehicle. These data sources collectively serve as input for subsequent processing within mmDrive . The ensuing steps are
elucidated as follows.

4.1. Pre-processing

Driving actions are not isolated instantaneous events; rather, they unfold over a period characterized by distinct temporal patterns
in the relevant features. To effectively capture this temporal variation, we aggregate 10 consecutive feature frames together. This
quantity is derived through empirical analysis, as elaborated upon in Section 5.4. Note to mirror real-world driving patterns more
closely; we have now revised our approach. Our dataset is divided based on timestamps, with the initial 80% allocated for training
and the remainder for testing. In our previous approach, we trained the model using a 70%–30% train–test split with random
sampling. However, this could lead to data leakage, as the testing set might contain samples with instances of mmWave data from
activities used for model training. By switching to a timestamp-based train–test split, we rectify this potential data leakage issue,
resulting in a more accurate representation of real-world driving scenarios. Subsequently, we subject the concatenated features to
normalization using a min–max scaler, which scales the features to fall from 0 to 1.
8
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Fig. 8. Overview of mmDrive .

4.2. Removal of road-induced noise

As discussed in Section 3, unfavorable road conditions like road fractures, speed bumps, etc., can directly influence the noise
profile and range-doppler heatmap. This variability in the feature space mirrors the impact stemming from the driver’s driving
actions, thereby introducing ambiguity if not addressed adequately. To identify and address such undesired variations, we employ an
alternative modality through IMU sensors located on the car dashboard. Following the approaches outlined in previous studies [30],
we utilize the 𝑧-axis acceleration of the vehicle to detect instances of jerkiness attributed to suboptimal road conditions or
bumps. This is achieved by establishing thresholds for the acceleration data. Subsequently, within the framework of mmDrive ,
the corresponding data derived from the mmWave sensor is filtered to mitigate the presence of undesirable noise in the feature
space.

4.3. Classification pipeline

Distinguishing itself from conventional approaches that rely solely on techniques like Convolutional Neural Networks (CNNs)
and range-doppler spectrograms [35–37], our approach leverages the combined potential of range-doppler, range profile, and noise
profile features to classify both normal and hazardous driving behaviors. In this context, we introduce an innovative Fused-CNN
architecture, illustrated in Fig. 9. The specifics of this model are elucidated in the subsequent sections.

4.3.1. Feature Extraction (FE) network
The range profile contributes to the maximum power value at zero-doppler regions, whereas the noise profile supplies noise floor

power at non-zero Doppler regions. This concatenation aids in comprehending the spatial dynamics of the driver across the entire
range bins. We concatenate 10 feature frames, as previously mentioned, to encompass temporal variations. Consequently, the range
and noise profiles manifest as vectors sized 64 × 1 × 10, and their concatenation yields an array of dimensions 64 × 2 × 10. In
contrast, the range-doppler heatmap constitutes a stacked 2D feature resembling an image with dimensions 16 × 64 × 10.

Our approach entails three Convolutional 2D layers employing valid padding and ReLU activation. This is followed by global
average pooling, yielding 96-dimensional range-noise-based embeddings. Similarly, the range-noise feature extraction employs
2D convolutional operations to capture dependencies among neighboring values within all possible 𝑘 × 𝑘 regions within each
range-doppler frame. These operations also consider the temporal interplay among the preceding 10 frames. This procedure
generates multiple cross-channel feature maps beneficial for subsequent model layers. Subsequently, four 2D Convolutional layers are
employed, maintaining the same padding and ReLU activation. These are succeeded by global averaging, resulting in 128-dimensional
range-doppler feature embeddings. Moving forward, the concatenated range-noise and range-doppler feature embeddings are
processed through two consecutive modules within the proposed architecture.
9
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Fig. 9. Fused-CNN model architecture.

.3.2. Dangerous Driving Behaviors (DDB) classifier
The DDB (Dangerous Driving Behavior) classifier receives the cross-channel feature embeddings from the FE Network and guides

hem through a sequence of two consecutive layers: Dropout and Dense. A dropout rate of 10% is implemented in the Dropout layers
o counteract overfitting. The final layer, featuring softmax activation, consists of 9 neurons, culminating in an output representing
comprehensive probability distribution encompassing the nine distinct dangerous driving actions.

It is noteworthy that the FE Network undergoes training exclusively via backward gradients originating from the DDB Classifier.
his approach facilitates the acquisition of efficient feature extraction capabilities optimized for classifying the 9 dangerous driving
ehaviors.

.3.3. Dangerous vs. Normal driving (DVN) classifier
The DVN Classifier capitalizes on the acquired feature embeddings from the pre-trained FE Network to effectively categorize all

ariants of hazardous driving behaviors when contrasted with normal driving. Importantly, the weights that the FE Network learns
uring the DDB Classifier training remain unaltered, given the halt in backward gradient propagation beyond the DVN Classifier.
his strategic decision optimizes overall training duration and maintains the model’s compactness, rendering it suitable for real-time

mplementation.
For further insights into the intricate architecture of the Fused-CNN network, you can refer to Fig. 9.

.3.4. Lazy inferencing
In the context of real-world application, the DVN Classifier plays a pivotal role in discerning whether the ongoing driving behavior

alls within the category of normal or hazardous. When the DVN Classifier detects normal driving behavior, mmDrive optimizes
its execution by deferring the involvement of the DDB Classifier. This strategic decision serves to curtail computational load and
conserve energy resources. The DDB Classifier is activated solely in scenarios where the DVN Classifier identifies indications of
potentially dangerous driving behavior. Subsequently, the DDB Classifier refines its assessment by determining the specific class of
dangerous driving behavior.
10
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Table 1
Radar configuration.

Parameters Value

Start frequency (GHz) 60
Range resolution (m) 0.0375
Maximum unambiguous range (m) 2.41
Maximum radial velocity (m/s) 1
Radial velocity resolution (m/s) 0.13
Frames per second 5
Number of chirps per frame 64
Baud-rate 921 600 bps

5. Implementation and evaluation

In order to assess the real-world implications of dangerous driving behaviors, we put into operation the experimental setup
ithin actual driving scenarios. This endeavor encompasses 5 distinct cars and involves 7, different drivers. To facilitate data

ollection, the radar is strategically positioned on the car’s dashboard. Following a comprehensive data-gathering process and
eticulous annotation of ground truth labels, we subject our novel Fused-CNN model to evaluation, contrasting its performance

gainst two contemporary state-of-the-art baselines. Further elaboration on the implementation and evaluation specifics is provided
n the subsequent sections.

.1. Hardware setup

Our mmDrive approach has been implemented utilizing the commercially available off-the-shelf (COTS) mmWave radar system
amed AWR6843ISK, manufactured by Texas Instruments. This FMCW-based mmWave radar operates within the frequency range
f 60 to 64 GHz and boasts a range resolution of approximately 4 cm, which is suitably adept at capturing the activities of interest
utlined in Section 3.2. The radar’s maximum detectable range spans up to 10 meters, encompassing a Field-of-View spanning −70◦

to +70◦ both azimuthally and in elevation. This Field-of-View configuration is conducive to detecting hazardous driving behaviors
taking place within the confines of the vehicle.

mmDrive effectively measures variations across 64 range bins, each representing a distance of 2.4 meters from the dashboard.
This provides a refined range resolution of 3.75 cm. Furthermore, the system captures doppler information spanning 16 doppler bins
ia the 2D Fast Fourier Transform (FFT), affording a velocity resolution of 0.13 m∕s. This resolution proves sufficient for accurately
apturing both micro and macro body movements of the driver within the realm of real-world driving scenarios. The configuration
arameters of the mmWave radar are detailed in Table 1.

For real-time driving behavior detection, a Raspberry Pi 4 Model-B with 8 GB RAM is employed. The mmWave radar and IMU
ensor are connected to the Raspberry Pi 4 via USB and the I2C bus, respectively. The IMU sensor serves to filter out road-induced
oises, as expounded upon in Section 4.2. Parsing of the mmWave radar’s serial data is executed, and the resultant data is forwarded
o the classification pipeline for the inference of driving behavior. Fig. 10(c) shows the latest hardware setup with the 3D-printed
tand for incorporating mmWave radar with the Raspberry Pi-4.

To establish the ground truth for driving actions, the Nexar Pro Smart Dash Camera2 is utilized. Videos collected from the Nexar
amera serve as a reference for annotating the features generated by the mmWave Radar. The hardware setup employed for field
xperimentation is visually depicted in Fig. 10(a). Further elucidation on the data collection strategy is presented in the subsequent
ubsection.

.2. Data collection

To procure raw mmWave features employing the aforementioned hardware components, we harnessed the mmWave-Demo-
isualizer3 and customized its source code to facilitate the collection of raw data based on user input. The data collection initiative
ncompassed 7 distinct users, spanning a cumulative time span of 60 h. Each user contributed ≈8.57 h to the endeavor. This data
ccumulation endeavor was conducted across three diverse vehicles, including three sedans, one SUV and one minivan. Among the
riving cohort, one participant was female, while the remaining were male, with ages ranging from 24 to 55.

The amassed dataset manifests a distribution across various dangerous driving behaviors, as depicted in Fig. 10(b). This
omprehensive dataset encompasses mmWave radar data, IMU readings, GPS data, video footage, and audio recordings captured
rom the roadside, as well as the car cabin’s rearview perspective. These records were obtained through the utilization of the
exar system. The process of annotating hazardous driving behaviors from the interior car camera footage was facilitated by the

nvolvement of three volunteers.

2 https://www.getnexar.com/global/the-dash-cams.
3 https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/.
11
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Fig. 10. (a) Hardware setup (b) Collected data distribution, (c) 3D Printed mmDrive probe.

5.3. Software setup and baselines

In the implementation of our driver behavior classifier model, we utilized Python 3.9, Tensorflow v2.10, and Scikit-learn v1.1.
Alongside our novel Fused-CNN-based approach, we also employed two established state-of-the-art baselines: Random Forest (RF)
and the VGG-16 network [38]. The model training procedures were executed on an iMac boasting 16 GB of primary memory,
running MacOS v12.6 with a base-kernel version of 21.6.0.

For the Random Forest model, features were engineered by computing statistics such as minimum, maximum, mean, and standard
deviation for the range profile, noise profile, and range-doppler data, within a kernel size of 16 × 1, 16 × 1 and 16 × 16 for the total
10 frames with an array size of 64 × 1, 64 × 1 and 16 × 64 respectively, resulting ( (64×1)(16×1) +

(64×1)
(16×1) +

(16×64)
(16×16) ) × 4 × 10 = 480 features.

The Random Search Cross Validation technique [39] was employed to explore the optimal hyperparameters for the RF classifier.
The model was trained with 400 estimators based on the outcome of this hyperparameter search.

Additionally, the VGG-16 [38] network was employed as another baseline. This network was initialized with pre-trained weights
from the ImageNet dataset [40], leveraging transfer learning to facilitate feature extraction from high-dimensional image-like input
data. In the Fused-CNN architecture, we augmented the base VGG-16 model with global average pooling, followed by successive
Dropout and Dense layers for the purpose of classifying hazardous driving behaviors. Model training was conducted utilizing a
train–test split of 70%–30%, with a validation split of 20% derived from the training set.

An alternative baseline was established employing an acoustic modality based on FMCW radar. Previous works such as [18,31,41]
use an acoustic sensing approach to detect dangerous driving behaviors with fewer behavior classes. This approach utilized the
smartphone’s embedded microphone and speaker to transmit and receive raw chirps in the near-ultrasound range of 16–19 kHz.
Subsequent post-processing encompassed applying Range-FFT to derive the amplitude and phase of the IF (Intermediate Frequency)
signal across distinct range bins. A 2D-doppler FFT was subsequently executed to generate the range-doppler heatmap. Lastly, a
Random Forest-based classifier was employed to evaluate and compare its performance against our mmDrive approach.

5.4. Results

Initially, we explore the influence of combining (stacking) sequential temporal feature frames acquired from the mmWave radar
on the precision of detection. Subsequently, we delve into an elaborate examination of outcomes, focusing on the outcomes obtained
through the most effective frame-stacking strategy.

5.4.1. Impact of frame stacking on F1-score
As depicted in Fig. 11(a), the duration of each driving action exhibits a notable skew, with a median value of approximately

16 feature frames derived from the mmWave radar data. This underscores the temporal influence of driving actions on the radar
measurements. To effectively capture this temporal impact, multiple frames are aggregated through stacking.

In order to determine the optimal frame stacking approach for detecting dangerous driving behaviors, an exploration of the
number of frames stacked is conducted, ranging from 1 to 16, as illustrated in Fig. 11(b). The figure notably illustrates the direct
correlation between frame stacking and the overall performance of the classification pipeline. This trend reveals that as the number
of frames increases, activities characterized by longer durations exhibit improved F1-Scores. For instance, activities such as using
12

a phone or experiencing an anomaly in steering, which entail lengthier time intervals, demonstrate enhanced performance with
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Fig. 11. (a) Distribution of Frames required to complete individual driving actions, (b) Variation in the weighted F1-Score with number of stacked frames.

Fig. 12. Confusion matrix for all the dangerous driving behaviors — (a) Fused-CNN, (b) RF, (c) VGG-16, (d) Acoustic-FMCW.
13
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Fig. 13. (a) Weighted F1-Score across driving behaviors, (b) AUC-ROC for classifying dangerous vs. normal driving.

ncreased frame stacking. However, behaviors with shorter durations, like fetching forward or nodding, experience a decline in
1-Score.

The data presented in Fig. 11(b) highlights that our proposed method (mmDrive ) attains the highest overall F1-Score when
employing a frame stacking of 10 frames, equating to a 2-second activity time window. Consequently, for the remainder of this
paper, we employ a frame-stacking strategy of 10 frames.

5.4.2. Performance of DDB classifier
We conducted a performance comparison between our proposed Fused-CNN model and two baseline approaches: (i) Random

Forest (RF) and (ii) VGG-16. The confusion matrix for all three classifiers is presented in Fig. 12. The outcomes from this matrix
unmistakably demonstrate that our proposed Fused-CNN model outperforms the baseline methods.

Fig. 13(a) showcases the average weighted F1-Score for each individual dangerous driving action. Among the two baselines,
RF exhibits a relatively better performance in contrast to VGG-16. The main reason for VGG-16’s subpar performance lies in its
expectation of a 2D input feature, such as a 2D range-doppler heatmap image in this scenario. As a result, it cannot fully leverage
the features derived from range or noise profiles. Additionally, VGG-16’s pre-training on the imagenet dataset does not align well
with engineering features from a 2D range-doppler heatmap, which tends to be predominantly sparse across range bins, except
where the driver is situated.

On the contrary, the RF model benefits from features passed through various kernel sizes, effectively capturing the spatial
variations in range, noise profiles, and range-doppler heatmaps. This attribute contributes to its relatively improved performance
compared to VGG-16. In contrast, our proposed Fused-CNN model possesses the advantage of autonomously learning spatiotemporal
cross-features, as its features are not manually engineered like RF’s (minimum, maximum, mean, standard deviation). Moreover,
the Fused-CNN model demonstrates a lower inference time, courtesy of its fewer convolutional layers compared to VGG-16.

5.4.3. Performance of DVN classifier
Fig. 13(b) illustrates the ROC curve for the DVN classifier. As depicted, the area under the curve (AUC) stands at 0.96, signifying

a high level of accuracy in distinguishing dangerous driving from normal driving behavior. Additionally, the observed weighted
F1-Score amounts to 90% ± 0.5%.

5.4.4. Driver demographics
Moving forward, we proceed to evaluate the Fused-CNN model on an individualized level, considering all five drivers. Table 2

presents the action-specific F1-Scores of the model. We observe consistent and commendable performance across all five drivers,
resulting in an overall weighted F1-Score of 91%±1%. It is noteworthy that certain activities pose more challenging detection tasks
for specific drivers due to factors such as their height, sitting posture, and seating arrangement. Furthermore, driving behaviors
naturally differ among individual drivers. Despite these driver-specific nuances, mmDrive exhibits robust generalization capabilities,
delivering noteworthy performance across all drivers.

5.4.5. Evaluation on different cars
Assessing the proposed FUsed-CNN model’s ability to identify hazardous actions exhibited by various car types accurately is

crucial for enhancing driving behavior analysis. As shown in Fig. 14(a), the Sedan1 and Sedan2 categories exhibit the highest
weighted F1-scores, both achieving an impressive score of 0.98. This outcome underscores the model’s robust ability to detect
hazardous actions within these sedan subtypes accurately. The Sedan3 category follows closely with a weighted F1-score of 0.96,
14

further establishing the model’s efficacy in classifying dangerous driving behaviors in this car type. The SUV category maintains a
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Fig. 14. Weighted F1-Score under (a) different cars, (b) different roads, (c) impact of IMU-based denoising filter.

Table 2
Driver-wise weighted F1-score.

Driving behavior Driver-1 Driver-2 Driver-3 Driver-4 Driver-5 Driver-6 Driver-7

Drinking 0.90 0.96 0.80 0.88 0.92 0.82 0.88
Fetching forward 0.94 0.86 0.91 0.94 0.87 0.97 0.95
Anomaly in steering 0.96 0.91 0.98 0.91 0.93 0.98 0.96
Nodding 0.95 0.89 0.97 0.95 0.95 0.98 0.94
Yawning 0.96 0.86 0.81 0.87 0.88 0.85 0.82
Picking drops 0.96 0.85 0.87 0.82 0.84 0.98 0.96
Using phone 0.91 0.95 0.93 0.92 0.93 0.90 0.89
Turning back 0.91 0.95 0.92 0.94 0.91 0.93 0.94
Talking left 0.90 0.86 0.89 0.92 0.93 0.83 0.88
Overall 0.93 0.90 0.90 0.91 0.91 0.92 0.91

weighted F1-score of 0.94, indicating reliable performance in recognizing hazardous actions despite the variation in car design and
features. The Minivan category possesses the lowest weighted F1-score among the groups at 0.91, as the Minivan is used only in
rural road dynamics with more road-bumps or potholes.

5.4.6. Performance across rural and urban roads
Fig. 14(b) shows the weighted F1-scores insights into the Fused-CNN model’s performance in detecting dangerous driving

ehaviors under varying road conditions. The highest weighted F1-score is achieved on Campus Roads (Urban), standing at an
mpressive 0.97. This result suggests that the model excels in identifying hazardous actions on well-maintained urban roads
ommonly found within a campus environment. Outside Campus (Suburban) roads exhibit a slightly lower but still commendable
eighted F1-score of 0.95. This outcome underscores the model’s capability to accurately classify dangerous driving behaviors even

n moderately varying road conditions typically encountered in suburban areas. However, the most noticeable contrast arises in the
ural road category, where the model achieves a weighted F1-score of 0.91. This lower accuracy can be attributed to the increased
resence of potholes and road bumps in rural areas. These road conditions introduce complexities that can lead to challenges in
dentifying hazardous behaviors accurately.

.4.7. Impact of IMU in denoising road-induced noise
Fig. 14(c) shows the difference in weighted F1-scores between the two scenarios, highlighting the significant impact of the IMU-

ased denoising filter on classification accuracy. With the filter in place, the model achieves a weighted F1-score of 0.95, indicating
substantial improvement in identifying dangerous driving behaviors. This enhancement can be attributed to the filter’s ability to
etect and mitigate the noise caused by road irregularities, allowing the model to focus more effectively on actual driving behavior
atterns. In contrast, without the IMU-based denoising filter, the model’s performance exhibits a lower weighted F1-score of 0.84.
his reduction in accuracy underscores the challenges posed by road-induced noise, especially from road bumps and potholes, which
an lead to misinterpretation of driving behavior and decreased model effectiveness. The key advantage of the IMU-based denoising
ilter is its capacity to distinguish between true dangerous driving behaviors and noise originating from road conditions. By utilizing
MU data to identify and remove the effects of road irregularities, the filter enables the model to make more precise classifications,
esulting in improved accuracy.

.4.8. Performance of acoustic-FMCW
In Fig. 12(d), we present the confusion matrix depicting the classification results of the nine dangerous driving behaviors

sing the acoustic-FMCW approach [18]. The outcome of this classification is an accuracy of only 36%, indicating a significant
truggle in distinguishing between the different dangerous driving behaviors. For instance, fetching forward is incorrectly identified as

picking/drops and nodding, likely due to the similarity in the driver’s body movements. Moreover, regarding the classification between
dangerous and normal driving, the acoustic-FMCW approach yields F1-Scores of 60% and 73%, respectively. These outcomes
emphasize the limitations of existing acoustic-based methodologies, which might perform reasonably well in scenarios involving
15

fewer behavior classes, but prove impractical for the differentiation of nine distinct driving behaviors.



Pervasive and Mobile Computing 103 (2024) 101949A. Sen et al.

5

m

5

w
p
t
c
b
o
s

6

i
a
s
(
a
a

d
b

m
a
w
d
d

C

d
V

D

t

Fig. 15. (a) Weighted F1-Score and latency, (b) Power Consumption, (c) Resource Utilization.

.4.9. Real-time system evaluation
We deployed mmDrive in a real driving environment to assess its efficiency in real-time inference. As illustrated in Fig. 15(a),

mDrive demonstrates superior accuracy compared to the baselines. Regarding latency, the DDB classifier of mmDrive takes
approximately 2.5 s to infer the dangerous driving activity class. Among the baselines, RF exhibits the shortest inference time,
approximately 2.33 s, albeit with a lower accuracy (weighted F1-Score of 78%). In contrast, VGG-16 performs the worst with an
average latency of 5 s. It is worth mentioning that the average latency of the DVN classifier is even less, (≈1.2) s, and only in case
it detects a dangerous driving behavior, it will initiate the DDB classifier. Having a latency of less than 3 s is sufficient to classify
dangerous driving activities, as per our study in Section 5.4.1 the activities usually take 3 (median at 16 frames) to 6 s.

.4.10. Resource and power consumption
Lastly, the power consumption profiles, as well as the CPU and memory utilization of mmDrive ’s Fused-CNN in comparison

ith the baselines, are presented in Fig. 15. As depicted in Fig. 15(b), it is noticeable that both Fused-CNN and RF exhibit higher
ower consumption when compared to VGG-16. Nonetheless, due to their lower computational demands, RF and Fused-CNN manage
o utilize CPU and memory resources more effectively, resulting in lower latency for real-time inference. The peaks in Fig. 15(b)
orrespond to the initiation of an inference process. Furthermore, the longer latency of VGG-16 compared to Fused-CNN and RF-
ased classifiers underscores its unsuitability for real-time deployment. As shown in Fig. 15(c) on analyzing the memory utilization
f all classifiers, it becomes evident that Fused-CNN employs CPU and memory resources in a similar manner to RF while achieving
ignificantly higher accuracy.

. Conclusion

Given the growing concern for road safety and the persistent issue of dangerous driving behaviors and driver inattention, it is
mperative to address this problem effectively. Over the years, researchers have dedicated substantial effort to finding solutions that
re not only efficient and widely applicable but also timely. In this study, we present a novel approach that leverages carefully
elected features extracted from the measurements of a commercially available mmWave Frequency-Modulated Continuous-Wave
FMCW) radar. Our method, named mmDrive , stands out as a comprehensive solution to tackle this issue. Not only is it compact,
daptable, and entirely on-device, preserving user privacy, but it also boasts an impressive accuracy exceeding > 95% in detecting
critical range of driver actions indicative of hazardous driving situations.

We introduce the concept of mmDrive and illustrate its potential benefits, highlighting its real-world applicability. By utilizing
ata from a single mmWave FMCW radar, we demonstrate how our solution can effectively detect a variety of dangerous driving
ehaviors. Through extensive evaluations conducted in diverse real-world scenarios, we compare mmDrive ’s performance against

established baselines, showcasing its superiority. Given these promising results, we are confident that mmDrive holds the potential to
ake a significant contribution to enhancing road safety by accurately identifying hazardous driving behaviors and thereby playing
pivotal role in preventing potential accidents and safeguarding lives across a wide range of driving conditions. In our future work,
e would like to extend mmDrive by incorporating an effective notification mechanism to alert the users. We also want to capture
river vital signs using the mmWave reflections and want to study how these physiological parameters correlate with dangerous
riving actions. We can further introduce vital signs-related features for classifying the severity of dangerous driving actions.
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