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Abstract—In this work, we introduce radarTrack, an inno-
vative ego-speed estimation framework utilizing a single-chip
millimeter-wave (mmWave) radar to deliver robust speed estima-
tion for mobile platforms. Unlike previous methods that depend
on cross-modal learning and computationally intensive Deep
Neural Networks (DNNs), radarTrack utilizes a novel phase-based
speed estimation approach. This method effectively overcomes
the limitations of conventional ego-speed estimation approaches
which rely on doppler measurements and static surrondings.
radarTrack is designed for low-latency operation on embedded
platforms, making it suitable for real-time applications where
speed and efficiency are critical. Our key contributions include
the introduction of a novel phase-based speed estimation tech-
nique solely based on signal processing and the implementation
of a real-time prototype validated through extensive real-world
evaluations. By providing a reliable and lightweight solution for
ego-speed estimation, radarTrack holds significant potential for a
wide range of applications, including micro-robotics, augmented
reality, and autonomous navigation.

Index Terms—Ego-Speed Estimation,
Phase-based Speed Estimation

mmWave Sensing,

I. INTRODUCTION

Comprehending the movements of mobile agents, whether
navigating through distant planets or mixed reality environ-
ments, is fundamental for adequate perception and interaction.
Ego-motion estimation is crucial, as it does not depend on
pre-existing maps or environmental infrastructure. Instead, it
derives the agent’s position and orientation from the data
collected during movement. Accurate odometry is also crucial
for developing maps, especially when using techniques like
Simultaneous Localization and Mapping (SLAM) to dynami-
cally build and update a model of the environment.

Due to their affordability and widespread availability,
MEMS inertial sensors (IMUs) are widely utilized for ego-
motion estimation across various mobile platforms. Estimating
position from acceleration involves double integration, leading
to errors [1]. Accelerometers struggle to detect acceleration
in ground vehicles moving at constant speeds due to sub-
tle changes in acceleration [2], [3]. Moreover, IMU often
requires precise calibration, which is challenging and labor-
intensive. This calibration often requires specialized and costly
equipment, such as synchronized clocks, precision turntables,
and motion tracking systems. Multimodal odometry systems
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have been developed to address these limitations, integrating
inertial data with additional sensor inputs, such as visual or
ranging information. Among these, visual-inertial odometry
(VIO) stands out for its robustness and is commonly found in
devices like mobile phones, offering a more reliable solution
for motion estimation [2], [4], [5]. However, VIO performance
can suffer or even fail in difficult lighting conditions, such
as in darkness where RGB cameras are ineffective or in
intense illumination where depth cameras may encounter glare.
Similar visibility challenges affect LiDAR-inertial odometry
(LIO), especially in the presence of airborne particles such
as dust, fog, or smoke. Moreover, LiDARs tend to be bulky,
heavy, and costly, making them more suitable for high-end
robotics than micro-robots or wearables.

mmWave based sensing offers distinct advantages over
vision-based systems, particularly due to its robustness against
environmental factors like scene illumination and airborne
obscurants. Unlike mechanically scanning radars, single-chip
mmWave radars utilize electronic beamforming, making them
lightweight and ideal for micro-robots, mobile devices, and
wearable technology. This technology is already being used
for motion sensing in smartphones like Google Pixel [6] or
obstacle detection in commercial drones [7], [8].

Traditional radar-based approaches estimate speed using
doppler shifts, constrained by the Discrete Fourier Transform
(DFT) to discrete steps of ﬁ, where T, is the chirp dura-
tion and N, is the number of chirps transmitted by the radar
in a single frame [9]. Speeds not matching these steps incur
errors, especially at very low speeds (v < ﬁ), placing
them in the sub-doppler regime, as seen in microrobots.

To illustrate this limitation, we conducted a comparative
study by mounting a radar on an ego-vehicle and placing
a static object in front of it. By moving the ego-vehicle
directly towards the static object, the radar captured phase
variations from the reflected signals, and by applying FFT to
these phase changes and scaling the results using the relation
v o= ﬁ%, we obtained phase-based speed estimates [9].
Fig. 1 demonstrates the effectiveness of phase-based speed es-
timation compared to traditional doppler-based methods under
different speed conditions. The blue line represents the FFT of
phase variations from a static object in the radar’s field of view
(FoV), where the peak corresponds to the actual speed of the
ego-vehicle. The noise level indicates the minimum achievable
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Fig. 1: Comparison of doppler-based and phase-based speed
estimation for a radar-mounted ego-vehicle moving at (a) 2.8
cm/s, and (b) 6 cm/s. The noise floor indicates the minimum
achievable speed detection limit.

speed detection limit for the phase-based approach. As shown
in Fig. 1(a), when the ego-vehicle operates in the sub-doppler
regime, the doppler-based method will fail to resolve the mo-
tion accurately, whereas the phase-based approach successfully
estimates the speed. In contrast, when the ego-vehicle speed
exceeds the doppler resolution threshold, as shown in Fig. 1(b),
although the doppler-based method can estimate better, it still
has resolution error, which is not the case for the phase-
based approach. This highlights the advantage of phase-based
speed estimation in scenarios where traditional doppler-based
methods suffer from resolution constraints.

Creating a reliable indoor odometry system based on this
concept faces several challenges. Firstly, radar returns are sus-
ceptible to noise from specular reflections, diffraction, and sig-
nificant multipath effects. Also, due to hardware constraints on
the number of antennas it results in highly sparse pointclouds
(PCDs) with limited angular resolution. This low-quality data
makes conventional LiDAR-based methods, such as Iterative
Closest Point (ICP) [10], almost ineffective when applied
directly to mmWave radar data. Secondly, while some previous
works [11]-[15] have employed a multimodal approach by
fusing radar data with other sensors, like IMUs and RGB
cameras, the potential of mmWave radar to complement these
modalities remains uncertain. Additionally, existing works
perform well in environments with only static objects [12],
[15], [16] but fail to perform adequately in the presence
of dynamic objects. Moreover, incorporating recent advances
in DNNs for visual or LiDAR odometry poses challenges
due to the significant computational load, which may limit
their use in mobile, wearable, and other resource-constrained
devices. Our research explores methods to make mmWave
radar more computationally efficient, focusing on leverag-
ing only the phase values of the reflected signals. In our
previous work [17], we demonstrated that phase-based ego-
speed estimation outperforms traditional approaches. However,
this method is constrained by the requirement of a static
environment and is effective only when a stationary object is
directly near the boresight angle of the radar’s FoV. However,
estimating the absolute ego-speed from phase variations of
objects at oblique angles is not trivial.

Motivated by these gaps of traditional ego-speed estimation,

in this work, we propose radarTrack, a novel ego-speed
estimation framework that relies solely on the phase returns of
mmWave radar. We have developed a fourth-order expression
of these phase patterns in terms of the ego-speed and showcase
how estimating the roots of this kinematics-based equation
can achieve accurate speed estimation. By leveraging a purely
signal processing-based pipeline, radarTrack enables us to
achieve low latency in estimating ego-speed on embedded plat-
forms compared to its DNN counterparts. The contributions
are summarized as follows:

1) Kinematics-based analytic equation for phase variation:
We derive an equation to represent the phase change in
objects induced by the ego-vehicle’s motion as a fourth-
order equation in terms of ego-speed, based on kinematics
laws. By solving the roots of this equation we have precise
ego-speed estimation even for static objects positioned at
oblique angles in front of the radar.

2) Lightweight, radar-based ego-motion estimation across
multiple platforms: We present a novel ego-speed es-
timation framework implemented on three platforms- an
Unmanned Ground Vehicle (UGV), a drone, and a hand-
held stick- using a single commercial-off-the-shelf (COTS)
mmWave radar. Our method eliminates the need for tradi-
tional, bulky setups with multiple sensors.

3) Dynamic and static object segmentation: Our method
introduces an innovative framework that combines doppler-
based speed profiling to effectively segment dynamic and
static objects in cluttered environments, helping us to ro-
bustly estimate ego-speed in highly dynamic environments.

4) Real-time edge processing for efficient ego-speed esti-
mation: Our lightweight signal processing enables real-
time performance without relying on deep learning models.
With a latency of only ~ 0.29 s (= 85% lesser than its
closest baseline, Radarize [16]) on a low-compute Jetson
Nano, our method is ideal for mobile applications.

II. RELATED WORK

We have classified the previous works on ego-motion esti-
mation into two categories: (i) methods based on multi-modal
fusion and (ii) methods that are purely radar-based.

Multi-Modal Sensor Fusion: Multi-modal sensor fusion
combines data from various sensors, employing techniques
from probabilistic fusion to deep learning-based attention
mechanisms. Traditional methods like probabilistic fusion,
fuzzy reasoning, and hybrid fusion have advanced with neural
networks, allowing for data fusion at multiple levels—from
raw data to final decisions [13]. Recent advancements incor-
porate self-attention mechanisms to dynamically evaluate input
or feature importance, improving ego-motion estimation or
other downstream applications on human activity recognition.
Data-driven deep odometry models have significantly ad-
vanced, allowing them to effectively model complex physical
processes and disturbances through end-to-end learning. These
models have been employed across various sensors, including
RGB cameras [18], depth cameras [19], [20], IMUs [21], [22],



TABLE I: Comparison of SOTA approaches with radarTrack.

SOTA Approaches Dynamic g?ﬁ;r bDaOSl;g]er lb:fs]e) d ]lj::ess
Milli-RIO [13] x x (IMU) | x v’ X
Kramer et al [12] | x x (IMU) | v~ x x
Radarize [16] x v’ v’ x x
EmoRI [23] v’ v’ v’ v’ x
milliEgo [11] x x (IMU) | x v’ x
Huang et al [14] v’ x (IMU) | v~ v’ x
Cen et al [15] x v’ X v’ x
4D iRIOM [24] v’ x (IMU) | x v’ x
radarTrack \/ \/ X \/ \/

and LiDARs [10]. MilliEgo [11] proposes a trajectory esti-
mation technique using either co-located multi-radar setups,
radar-inertial data, or radar-inertial-visual data. It uses DNNs
to regress out six degrees of freedom (DoF) pose estimates,
incorporating a mixed attention multi-modal sensor fusion
module to leverage the complementary nature of different
sensors (mmWave, IMU, Camera, etc.). While it achieves
promising results, it faces challenges with large drifts in
handheld scenarios and imperfect loop closures. Additionally,
the DL component leads to high inference times. The main
advantage of deep odometry models is their ability to bypass
extensive calibration, making them accessible to non-experts.

Purely Radar-Based Methods: Unlike these methods
which rely on a combination of sensors, several recent works
like [15], [16], [23] focus solely on radar-based odome-
try using point association or doppler shift For example,
Radarize [16] utilizes doppler-azimuthal heatmaps for transla-
tion estimation and range-azimuthal heatmaps for rotation es-
timation. The system processes consecutive heatmaps through
neural networks to determine both the translation and rotation
of the device, incorporating advanced techniques like echo
suppression for multipath rejection. Despite achieving com-
petitive accuracy, the method’s reliance on neural networks
and high computational requirements limit its real-time capa-
bilities, especially in dynamic environments with numerous
moving objects. In [17] authors have proposed ego-speed
estimation using raw phase values of the mmWave radar,
however the proposed system can only work with a single
static object and when the ego-vehicle is moving in a straight
line towards the static object. Also, the estimated speed is
the relative radial speed of the static object. [23] focuses on
improving ego-speed and trajectory estimation in environments
with dynamic objects by employing a hybrid FFT-MUSIC
algorithm to reduce angle estimation errors and selectively
process data from static points to mitigate the influence of
dynamic objects. However, it still faces challenges in highly
dynamic environments and cannot work in sub-doppler resolu-
tions. [15] employs a three-step process: extracting landmarks,
associating points through scan matching in two rounds, and
determining the rigid body transformation that best aligns the
PCDs. The method incorporates advanced noise and multipath
rejection techniques, leveraging the shape consistency of PCDs
across frames. While effective in various scenarios, this ap-
proach requires careful handling of high-frequency noise and
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Fig. 2: System pipeline of radarTrack.

multipath reflections and may face limitations in environments
with cluttered objects or significant measurement errors.
Also, works like [25], [26] deal with the inherent spar-
sity of the radar compared to optical sensors like LiDAR.
[25] employs GANs to densify sparse radar PCDs, while
RadarHD [26] uses an asymmetric UNet for radar heatmap
upsampling. To the best of our knowledge, radarTrack is
the only dynamic, radar-only approach that utilizes PCD and
phase-based features. In contrast, other SOTA methods rely on
IMU, Doppler, or partial radar features (see TABLE I).

III. SYSTEM DESIGN

Before we dive into the details of radarTrack, let’s outline
the objectives and decisions that guided our design choices.

A. Design Choices

Traditional radar applications often depend on large, costly
scanning radars that rotate and scan their environment using
mechanical motors. We exclude these radars from our study
as they are unsuitable for lightweight, compact robots. In-
stead, we focus on single-chip COTS radars. Unlike previous
approaches that rely on additional sensors such as wheel
encoders, IMUs, or LiDARs [11]-[14], [25], our method
leverages the intrinsic properties of radar for odometry. This
choice is justified as IMU-based speed estimation leads to
integration error accumulation, and radar’s inherent capabil-
ities make IMUs redundant for 2D SLAM. Most existing
ego-motion estimation methods are designed for environments
with static objects within the FoV [12], [16]. However, in
real-world scenarios, dynamic objects are commonly present.
Our design addresses this challenge by incorporating dynamic
object handling into our ego-speed estimation framework.
Most previous works rely on mmWave radar data combined
with DNNs to estimate translational speed [11], [16], [27].
However, these methods can be computationally intensive and
challenging to implement on edge devices for real-time com-
puting. Our approach demonstrates how signal processing and
mathematical approaches can be effectively used to achieve
precise ego-speed estimation.

B. Design Outline

As shown in Fig. 2, our method is designed with two main
components that work together to estimate the speed of an ego-
vehicle using radar data. Each component addresses a specific
aspect of motion estimation, leveraging different properties of
radar sensing. The components are as follows:
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Fig. 3: (a) For all static points, the radial component (green arrow) of the relative speed which varies sinusoidally, (b) Distribution
of ego-vehicle speed estimates, (c) A typical dynamic scene (left) and classification output (right).

Differentiating between static and dynamic objects: The
initial step involves distinguishing between static and dynamic
objects within the FoV by analyzing the radial speed profiles
of individual objects. When a radar sensor moves, all sta-
tionary targets appear to move in the opposite direction from
the sensor’s perspective. To effectively separate static from
dynamic objects, we employ distribution-based thresholding
on the scaled radial velocities of all points in the radar PCD.
Since static points have a similar distribution in the radial
speed profiles relative to the radar thus, it effectively segregates
the static objects from dynamic ones.

Translational Speed Computation: We use a novel phase-
based approach to compute the translational speed of the
ego-vehicle. Unlike previous methods that rely on doppler
shift [16], [27], which may not be effective at low speeds
(sub-doppler resolution) and can be erroneous due to PCD
estimation, our approach utilizes the subtle phase changes
in reflectors within the environment. These phase variations
provide precise relative movement information of the vehicle,
allowing accurate speed estimation in slow-speed applications.

C. Segregating Static Objects from Dynamic Objects

We differentiate between static and dynamic objects in
the radar’s FoV by analyzing the relative speed profiles of
individual points detected by the radar. For a stationary radar,
the doppler shift directly gives the radial speed of moving
objects. But when the radar is in motion, all targets within
its FoV appear to move relative to the radar. For stationary
objects, the doppler shifts follow a cosine relation with the
angle between the radar and the object. However, for dynamic
objects, the radial speed has components from both the radar
velocity and the object’s own velocity and, therefore, does not
follow the direct cosine relation. We exploit this property to
segregate static and dynamic objects.

The radar return for a frame can be expressed as P =
{pi = (ri,0;, i, vr5) N, where the i*" point in the radar
PCD is characterized by its range r;, azimuth angle 6;, and
elevation angle ¢;, in the radar’s frame of reference, and v,.;
is the radial speed of the point, relative to the radar. Consider
Fig. 3(a), where a radar-mounted ego-vehicle is moving in
an environment with a static (P;) and a dynamic (P;) object
in the FoV of the radar. The instantaneous velocity of the
ego-vehicle is vy, making an angle o with the radar pointing
direction. The dynamic object, P>, moves with a velocity v,

making an angle v with the radar pointing direction. The
radial speeds of the static and dynamic points can be given by
vp1 = Upcos(6y —a) and vy = vpcos(Bz+a) —vgcos(B2+7),
respectively. Notably, all static points will have similar radial
velocity profiles v,.; = vycos(6;—«). However, dynamic points
will have different velocity profiles due to the contribution
from their velocity component, vy;cos(6; + ;). We define the
ego-vehicle speed estimate from the i** point, 7,; as %
We observe that for static objects, vp; will be theoretically
equal to ego-vehicle speed, v, whereas dynamic objects will
not follow this relationship. In practice, ¥p;’s do not exactly
equal v, due to the radar’s noise and doppler and angular
resolutions. The static points are identified as,

S ={pi € P| ¥ € (Mo — ko, Mo + ko)} e8]

where My = mode;(vy;), o is the standard deviation, and k
is a multiplying factor which signifies the spread of the static
points. Higher errors in doppler and angular estimation lead
to higher values of k. We have chosen k£ as 1. Figure 3(b)
shows the distribution of ego-velocity estimates for a frame.
Estimates corresponding to dynamic points lie away from the
peak corresponding to static points. We assume static points
outnumber dynamic points, which is fair since indoor scenarios
contain static reflectors like walls, windows, and furniture with
high radar cross-sections.

To find «, consider two static points p; and p;. The ratio
of their radial velocities can be expressed as = %;:Zg.
We obtain an estimate of « as,

Vrj
'Ur,-j

jcos(0;) — vp;cos(0;)

vp;8in(0;) — vy ;sin(6;)

Ur

&; 5 = 2)
With the assumption that static points are in the majority,
we can estimate « as & = mode ; j (& ;).
i#]
D. Estimating Translational Changes with Phase Unwrapping

Once we have the static points, we estimate the translational
speed of the ego-vehicle. For that purpose, we first need to
precisely track the presence of the objects in the FoV.

1) Range bin selection: The range-FFT on the radar’s raw
I/Q frames outputs the positions and phase variations of the
objects present in the FoV of the radar. Initially, we identify
the peak index in the range-FFT for a given frame and chirp,
which corresponds to the object’s distance from the radar
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in front of a moving radar.

based on the 95" percentile of the signal-to-noise (SNR)
value. As identified in the previous stage, we select those peak
indices closer (within 4= 3 range bins) or exactly at the range
where static objects are present. Once we select the range
bins corresponding to the static objects, our next objective is
to analyze the phase variation in those bins over time.

2) Phase Unwrapping of Raw Phase Values: The raw
phase values obtained from the radar at a particular range bin
where a static object is present may experience discontinuities
due to the periodic nature of the phase representation. To
ensure accurate phase measurements for speed estimation, we
perform phase unwrapping. This process involves identifying
and correcting phase jumps greater than 7 radians, providing
a continuous phase representation over time. Specifically, if a
phase difference between consecutive measurements exceeds
m, a correction is applied by subtracting multiples of 27
to eliminate the discontinuity. The unwrapped phase can be
expressed as: Pupwrappea(t) = P(t) + 27n, where n is an
integer that adjusts the phase to remove discontinuities. Due
to phase unwrapping, we can only estimate velocities without
ambiguity when the consecutive change in the phase values,
A®, is less than 27. Thus, unwrapping the phase values leads
to a maximum measurable speed of up to 7.75 m/s.

3) Computing Translational Speed: As shown in Fig.3(a),
the previous works on ego-speed estimation use the doppler
shifts from the radar PCD and compute the ego-speed as
vwo= i where v,! and €' are the radial speed and
angle-of-arrival of i*" PCD respectively. As PCD estimation
is sparse due to poor angular resolution (= 15°), it can
easily corrupt the final translational speed computation. On
the other hand, the doppler shift v,.% is computed by doppler-
FFT on the number of chirp axis of the radar raw 1/Q data,
so if the phase change in the chirp axis is lower than the
doppler resolution then FFT-based doppler speed computation
won’t detect the speed accurately. Thus, both these approaches
together contribute to an erroneous ego-speed estimation.

Our idea for ego-speed estimation is derived from the basic
physics of the phase values. As shown in Fig. 4(b), at time
t within a frame (0 < ¢t < T'), we have the static object at
a distance of 7(t), given by r(t)? = X (t)2 + Y (t)%. As seen
previously, the ego-speed vector has magnitude v, and makes

an angle o with the radar pointing direction. On differentiating
with respect to time (¢) and assuming ego-speed, v, remains
constant during the frame time, T (which is 150 ms in our
case) we have,

(20

= (Xo —weos(a)t)(—ucos(a) 5
+(Yo — wpsin(a)t)(—vpsin(a))

On integrating Eq. (3) with respect to time from ¢ = 0 to ¢
and with respect to r(t) from ry to r; we have,

Ty = \/T(Z) — 2upt K (o) — vit? 4)

where K(a) = Ypcos(a) + Xosin(a). When the ego-
vehicle is in motion, the distance r(t) changes with time,
leading to a corresponding phase change ®(t) = @, + 45~.
Therefore, the rate of change of r, at multiple chirps coming
within a single frame can be expressed as d” = cd%t), where
c is a constant. After differentiating both 51des of Eq. (4) with
respect to ¢, squaring and simplifying, we have,

a(t) vp +b(t, @) v + c(t, @) vi +d(t,a) vy +e(t) =0 (5)

where a(.),b(.),c(.),d(.) and e(.) are coefficients given by,
a(t) = t2, b(t,a) = —2K ()t
c(t,a) = K(a)? — t2c202(t)
d(t,a) = 2tK(a)c?©%(t), e(t) = —r3c?0%(t)

where, ©(t) = 42(t). Eq. (5) represents a 4th-order equa-
tion in ego-speed, vy, with four possible roots. For each static
point, j from 1 to N, we directly obtain ®; ; at a time instant
t;, where ¢ goes from 1 to [N, (number of transmitted chirps).
For each static point in a frame, we have four roots of the
equation for each chirp. Thus, we have N x N x4 such roots in
a single frame. One root must be common across all the chirps,
as vy is a physical quantity. We compute all the roots for a
single frame and take the median to find the common root,
which occurs most frequently. This approach helps compute
the translational speed even below doppler resolution as it
depends purely on the phase changes of the selected static
objects.

Although this approach is effective when a static object
is the only one in its range bin. When multiple objects
share the same range bin, their phasor representation forms
a resultant phasor that deviates from Eq. (4), imposing a
restrictive condition on selecting static points. This constraint
can be relaxed by noting that the resultant of two phasors,
with amplitudes A; >> A, closely follows the dominant
phasor, as shown in Fig.4(a) by phasors 1 and 3. For example,
let’s say we have n objects in a single range bin, whose
phasors can be computed with doppler-FFT having amplitudes
Ay, As, ..., A,. We consider this range bin for further com-
putation only if a single phasor is dominant over the other
phasors (A; >> Ay >> ... >> A,). Thus overall, the
advantage of our method over naive doppler-based processing
is demonstrated using Fig.4(a). For an object located in the
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indicated range bin, phasor 1 (green) and 2 (blue) show two
possible radial speeds (f; and f5), both of which lie between
the i and (i 4+ 1)** doppler bins. Doppler-FFT places both
speeds in the i‘" bin, whereas our method can accurately find
and distinguish them.

IV. IMPLEMENTATION

We have implemented radarTrack over three different se-
tups, as discussed next.

A. Hardware setup

Platforms: We use a Texas Instruments IWR1843 radar [28],
and a DCA1000 data capture card to receive raw I/Q samples.
We evaluate our method on three platforms: (i) UGV ego-
vehicle: We mount our radar on a remotely operated ground
robot, which navigates along various trajectories. (ii) UAV:
We utilize a low-flying drone with a Pixhawk 2.4.8 flight
controller to collect radar data under different speeds. (iii)
Handheld: For the handheld setup, we mount the radar on
a 95 cm long handheld stick carried around by volunteers
in predefined trajectories. The hardware setups are shown in
Fig. 5(a). In each case, for computing, we use a Jetson Nano
running Ubuntu 18.04, featuring a quad-core CPU and 4 GB
of RAM. We also use a 6-axis IMU, MPUG6050 for logging
the acceleration and gyroscope values.

Radar Configuration: The radar works in a frequency range
of 77-81 GHz. We configure the radar to a range resolution of
0.0429 meters, and the radial speed resolution is set to 0.0496
m/s. The system operates at 10 frames per second, with 182
chirps per frame and 256 ADC samples per chirp.

B. Ground Truth Speed Estimation

To establish the accuracy of our speed measurements, we
utilized a Vicon Vero tracker (v1.3X) motion capture sys-
tem, which provides high-precision, real-time tracking of the
position and orientation of the ego-vehicle. By comparing
the speed estimates from the radar with the ground truth
measurements from the Vicon system, we could evaluate the
accuracy and reliability of our speed estimation algorithm.

C. Baselines and Evaluation Metrics

We choose the following baselines for comparison of our
method: (1) Radarize [16], which uses a ResNet18-based DNN
architecture for translational speed estimation taking only
radar doppler-azimuth heatmaps as its input, (ii) Doppler based
approach [9], which computes doppler-FFT on the raw I/Q

o
o

Q
£0.4
<
s 0.2 g
0.0l == -
Rada\,“%})‘pp\e\' Y m.‘“-‘gg;ada\—‘\ze

Fig. 6: MAE with radarTrack compared to baselines.

data and estimates the speed from the peak doppler bins, (ii)
IMU-based odometry [29, Sec. 6.1.1] and (iii) MilliEgo [11]
model which fuses both mmWave range-angle heatmaps along
with IMU. It predicts the position coordinates of the ego-
vehicle, and we modify it to predict the ego-speed instead.
We use the Vicon system to capture the trajectory of our
ego-vehicle. From this recorded trajectory, we calculate the
ground truth speed of the ego-vehicle. We have considered
mean absolute error as the primary evaluation metric.

V. EVALUATION

This section provides a thorough evaluation under different
combinations of reflectors and ego-vehicle setups.

A. Overall Performance

Fig. 6 shows the distribution of MAE across different
methods. As can be seen, the median of MAE with radarTrack
is =~ 2 cm/s. Fig. 7(a) presents the MAE for various methods
at different speed levels (Low, Mid, High). The speed ranges
are defined as follows: Low < 0.25 m/s, 0.25 m/s < Mid
< 0.61 m/s, and 0.61 m/s < High < 1.05 m/s. Our method
consistently achieves the lowest error (approx 5% of the base
speed, on average), outperforming the closest competitor, the
doppler-based approach, by up to 4x in accuracy.

As the vehicle’s speed increases, we notice that the error
grows, likely due to the increasing noise in the phase com-
ponent of the reflected signals. The doppler-FFT technique
also tends to worsen speed estimation at higher speeds as
the inherent phase errors can accumulate more errors in the
doppler-FFT. Also, at low speeds, the doppler-based method
struggles to capture small-scale movements that fall below the
doppler resolution, leading to higher errors when compared to
our approach. Interestingly, the IMU-based odometry performs
better at high speeds compared to low speeds. This discrepancy
is likely caused by time drift in the IMU data during lower-
speed scenarios, where longer collection durations introduce
drift errors. milliEgo [11] performs the worst, suffering from
limitations in both IMU and mmWave modalities. On the
other hand, radarize [16] also performs poorly during dynamic
scenarios when multiple objects are moving in the radar’s FoV.

B. Performance with Different Ego-Vehicle Settings

We evaluated the performance of radarTrack on three dif-
ferent ego-vehicle platforms: UGV, handheld device, and UAV,
as demonstrated in Fig. 5(a). Fig. 7(b) presents the results for



— UGV UAV  —— Handheld

|
il

milliEgo Radarize

Iy
°

= Low [0, 0.25]
0.4 ==E Mid [0.25, 0.61]
N High [0.61, 1.05]

.
®

o
£

14
Y

o1 m B

°
N

Mean Absolute Error (MAE)
Mean Absolute Error (MAE)

!
o.v,aéjﬁgck DEpIpler 1

radarTrack Doppler  IMU

(a) (b)

milliEgo Radarize
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radarTrack across the different ego-vehicle platforms, compar-
ing its performance against other baselines. For the UGV plat-
form with a baseline speed of 0.25 m/s, radarTrack achieves a
MAE of approximately 0.02 m/s, performing consistently well
due to the minimal noise caused by translational movement on
the ground. In contrast, the UAV platform (baseline speed of
0.21 m/s) presents more challenges, as vibrational noise and
translational motion in the vertical axis introduce significant
noise into the speed estimates. Consequently, the MAE for
the UAV setup is around 0.15 m/s, which is notably higher
due to the difficulty in compensating for the UAV’s variable
altitude and dynamic movement. Lastly, the handheld setup
(baseline speed of 0.35 m/s) exhibits an intermediate level of
noise, primarily due to human subjects repeatedly turning the
stick left and right, generating noise in the speed estimates,
leading to an MAE of approximately 0.16 m/s.

C. Performance Improvement with Phase-Based Approach at
Different Speeds

State-of-the-art methods for ego-speed estimation, such as
Radarize [16] and MilliEgo [11], primarily rely on range-
doppler processing, which involves applying an FFT to the
range data across multiple chirps. However, this approach
results in a fixed doppler resolution, meaning speeds that fall
between the resolution steps cannot be accurately estimated.

In contrast, using raw phase data enables tracking much
finer movements due to the relationship ¢ = %, where A
is the wavelength, typically on the order of millimeters (~ 4
mm). So by leveraging the phase variations, for example with
a phase change of just 0.057°, minute changes in range (as
small as Ar ~ 0.63um) can be detected [30, Sec. II-B].

In Fig. 8, we present a qualitative comparison between speed
estimates from the phase-based method and those obtained
from the range-doppler heatmap, a conventional state-of-the-
art approach. The speed estimates from the range-doppler
heatmap are notably noisier at lower speeds (e.g., 1.5 cm/s)
because the true speed lies within the doppler resolution limit
(4 cm/s). Even at higher speeds, the phase-based method
delivers more accurate speed estimates. This is because, at
high speeds, the range-doppler FFT can introduce errors as
the range bin also shifts within a single frame, leading to
incorrect phase values when tracked at the frame level. In
contrast, radarTrack operates at a chirp-level resolution for
phase-based speed estimation, enabling more accurate and
robust performance across a range of speeds.
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Fig. 8: Comparative study of the doppler-based vs phase-based
speed computation: (a) Ego-vehicle moving at medium speed
(12 cm/s) and (b) lower speed (1.5 cm/s) (Note: ~ve speed
represents the ego-vehicle is approaching a target).

D. Performance with different combinations of static and
dynamic reflectors

We evaluate the performance of radarTrack under various
combinations of static and dynamic reflectors (see Fig. 5(b)):
(1) 3 static objects, (ii) 2 static and 1 dynamic object, (iii)
2 static and 2 dynamic objects, (iv) 1 static and 1 dynamic
object, and (v) 2 dynamic objects.

TABLE II: MAE for Different Combinations of Static and
Dynamic Reflectors

Configuration MAE (m/s)
3 static objects 0.018
2 static objects, 1 dynamic object 0.025
2 static objects, 2 dynamic objects | 0.037
1 static object, 1 dynamic object 0.045
2 dynamic objects 0.054

The static objects in our setup include typical household
items like chairs and metal objects, representing surfaces
with different reflective properties. For dynamic objects, we
utilize a small robot car with an aluminum foil-coated box
(to emulate high reflectivity to generate maximal interference
with our method) and human subjects to capture different
motion and reflective behaviors. The accuracy of radarTrack
tends to decrease as the number of high-reflective dynamic
objects increases. This is primarily due to the additional
phase noises introduced by the movement of dynamic objects,
which complicates the inference process. However, despite
the increasing complexity, radarTrack consistently maintained
a reasonable level of performance, effectively handling the
dynamic environments. The results (see Table II) highlight
that introducing dynamic objects leads to some degradation
in accuracy, but the overall system remains robust. Notably,
with three static objects, the system achieves its highest
accuracy since the reflections from the static objects remain
stable. Conversely, with two dynamic objects, performance
dips slightly due to the increased unpredictability and motion
interference in the radar FoV. Notably, the ego-vehicle does
not observe any static objects initially in this case, thus having
a high estimation error initially (approx 0.2 m/s); however, as
it moves towards the wall, it considers the wall as a static
object and reduces the error significantly (approx 0.01 m/s).
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E. Resource and Power Consumption

We analyze the power consumption and resource utilization
of radarTrack in comparison to Radarize and MilliEgo, evalu-
ated on a Jetson Nano equipped with 4 GB RAM and a quad-
core CPU. As shown in Fig. 9(a), radarTrack demonstrates a
significantly lower and more stable power consumption profile.
The baseline power for radarTrack remains around 2.25 W,
with occasional spikes reaching 2.56 W during inference. In
contrast, the DNN-based methods, Radarize and MilliEgo,
exhibit higher peaks, reaching up to 2.75 W and 3.12 W,
respectively. The continuous spikes in power for these DNN-
based methods reflect their higher computational load and
energy demands, making them less suitable for lightweight,
low-power applications. As shown in Fig. 9(b), radarTrack
utilizes only 84% of CPU and 10% of RAM, significantly
lower than the DNN-based approaches consuming 99% of
CPU usage, with Radarize using 53% and MilliEgo consuming
up to 68% of the available 4 GB memory. The latency of
radarTrack is approximately 0.29 s, significantly lower than
that of Radarize (3 s) and MilliEgo (5 s).

VI. CONCLUSION

In conclusion, we propose radarTrack, a novel odometry
framework that leverages a single-chip mmWave radar for
robust ego-motion estimation in challenging environments.
Unlike existing methods, radarTrack relies solely on mmWave
radar data, overcoming limitations such as noise, sparsity, and
slow speed operation. Our approach, based on phase-based
speed estimation, offers low latency and high reliability, mak-
ing it suitable for mobile, wearable, and resource-constrained
devices. The proposed approach can be extended for real-time
navigation support for micro-robots, autonomous maneuvers,
and assistive movements through augmented reality, which we
keep as the future extension of this work.
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