
DEMO: Beyond Doppler: Demonstrating
Phase-Based Ego-Speed Estimation on Embedded

mmWave Radar

Argha Sen††, Soham Chakraborty†, Soham Tripathy‡, Sandip Chakraborty§
Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur

Email: ††arghasen10@gmail.com, †sohamc1909@gmail.com, ‡sohamtripathy2001@gmail.com, §sandipchkraborty@gmail.com

Abstract—In this demonstration we introduce a novel approach
to ego-speed estimation using a single-chip Commercial-Off-the-
Shelf (COTS) millimeter-wave (mmWave) radar. Contrary to
previous approaches that are cross-modal learning based and
dependent on the computationally expensive nature of DNN’s,
our proposed approach RadarTrack is based on a phase-based
approach to speed estimation. Our approach successfully over-
comes the drawbacks of traditional ego-speed estimation methods
that are doppler-based and static environment dependent. Radar-
Track is intended to support low-latency execution on embedded
systems such that it can be used in real-time applications where
efficiency and speed are equally important. We have also created
a real-time visualizer which is capable of recording the phase-
based ego-speed together with state-of-the-art doppler-based
speed estimation and comparatively demonstrate how phase-
based ego-speed estimation can better record the speed of an
ego-vehicle.

Index Terms—Ego-Speed Estimation, mmWave Sensing,
Phase-based Speed Estimation

I. INTRODUCTION

Accurate motion estimation at slow speeds remains chal-
lenging, particularly because conventional sensors such as
cameras, IMUs, and LiDARs often lose effectiveness in these
conditions. When movements are subtle and visual features are
sparse, radar technology offers a significant advantage [1]–
[5]. This demonstration primarily focuses on applications
that demand precise translational speed estimation in slow-
speed scenarios, such as indoor navigation, close-proximity
maneuvers, and micro-robotics.

IMU based odometry are widely used for ego-motion esti-
mation across various mobile platforms. However, estimating
position from acceleration requires double integration, which
accumulates errors over time [6]. In ground vehicles moving
at constant speeds, accelerometers struggle to detect subtle
changes in acceleration [7], [8]. To overcome these limita-
tions, multimodal odometry systems have been developed,
integrating inertial data with complementary sensor inputs,
such as visual or ranging information. Among these, visual-
inertial odometry (VIO) stands out for its robustness and is
widely deployed in devices like smartphones [7], [9], [10].
Nevertheless, VIO can degrade significantly under difficult
lighting conditions, such as complete darkness or intense glare,
where cameras underperform.

mmWave sensing offers distinct advantages over vision-
based systems, particularly its resilience to environmental
factors like lighting variations and airborne obscurants. Unlike
mechanically scanning radars, single-chip mmWave radars
utilize electronic beamforming, making them lightweight and
ideal for mobile devices, micro-robots, and wearable tech-
nology. However traditional radar-based approaches estimate
speed using doppler shifts, where the Discrete Fourier Trans-
form (DFT) constrains measurements to discrete velocity
steps. Speeds that do not align with these discrete steps incur
estimation errors, especially at very low speeds, placing them
in the sub-doppler regime, as encountered in micro-robotics.

Despite its promise, building a reliable indoor odometry sys-
tem using radar presents several challenges. Radar signals are
prone to noise from specular reflections, diffraction, and strong
multipath effects. Furthermore, limited hardware antenna
counts result in highly sparse point clouds (PCDs) with low
angular resolution. This sparse, noisy data makes traditional
LiDAR-based techniques like Iterative Closest Point (ICP) [11]
largely ineffective when applied directly to mmWave radar
data. Additionally, while previous studies [2], [4], [5], [12],
[13] have utilized multimodal approaches by combining radar
with IMUs or RGB cameras, the true potential of mmWave
radar to independently complement these modalities remains
unclear. Most existing systems perform well in static environ-
ments [1], [4], [12] but struggle when dynamic objects are
introduced. Moreover, deep learning-based advances in visual
and LiDAR odometry are often computationally intensive,
posing a challenge for mobile, wearable, and other resource-
constrained platforms.

To implement RadarTrack, we first differentiate between
static and dynamic objects within the radar’s field of view
(FoV). This is achieved by analyzing the distribution of radial
speed profiles: as the radar moves, stationary objects exhibit
uniform motion relative to the sensor, allowing us to apply
a distribution-based thresholding method to effectively isolate
static points from dynamic ones. Following this, we compute
the ego-vehicle’s translational speed using a phase-based tech-
nique. Instead of relying on doppler shifts [1], [14]—which
become unreliable at low speeds and are prone to errors from
noisy point cloud (PCD) estimations—our approach leverages
subtle phase variations from environmental reflectors. These



variations offer precise measurements of relative movement,
enabling robust and accurate speed estimation even in low-
speed, sub-doppler conditions.

II. PROPOSED FRAMEWORK OVERVIEW

A. Static-Dynamic Object Classification

We differentiate static and dynamic objects in the radar’s
field of view (FoV) by analyzing their relative speed profiles.
For a stationary radar, the Doppler shift directly provides the
radial speed of moving objects. However, when the radar is
mounted on a moving platform, all objects appear to have
motion relative to it. Stationary objects follow a predictable
cosine relationship between their Doppler shift and their angu-
lar position, while dynamic objects exhibit deviations from this
pattern due to their own motion. We exploit this distinction:
by estimating the ego-vehicle speed from each radar point
based on its measured radial velocity and comparing it to the
expected value, points corresponding to static objects can be
identified. Static points cluster around a common ego-velocity
estimate, while dynamic points deviate from it. We assume
that static points outnumber dynamic ones, which is valid for
indoor environments rich in stationary structures like walls.

B. Translational Speed Estimation

Algorithm 1 Range Peak Identification
1: Input: Raw I/Q frames, range values of static objects
2: Output: Peak indices of static objects
3: for each frame do
4: Perform range-FFT on the frame
5: Identify peak indices above the 95th percentile of SNR
6: Consider the indices within ±3 of the static range bins
7: Store indices of the range peaks
8: end for

Once we have the static points, we estimate the translational
speed of the ego-vehicle. For that purpose, we first need to
precisely track the presence of the objects in the FoV.

The range-FFT on the radar’s raw I/Q frames outputs the
positions and phase variations of the objects present in the
FoV of the radar. Initially, we identify the peak index in the
range-FFT for a given frame and chirp, which corresponds
to the object’s distance from the radar based on the 95th

percentile of the signal-to-noise (SNR) value. As identified in
the previous stage, we select those peak indices closer (within
±3 range bins) or exactly at the range where static objects
are present. Algorithm 1 summarizes the overall flow of range
peak selection.

Once we select the range bins corresponding to the static
objects, our next objective is to analyze the phase variation
in those bins over time. The raw phase values obtained from
the radar at a particular range bin where a static object is
present may experience discontinuities due to the periodic
nature of the phase representation. To ensure accurate phase
measurements for speed estimation, we perform phase unwrap-
ping. This process involves identifying and correcting phase
jumps greater than π radians, providing a continuous phase
representation over time. Specifically, if a phase difference

between consecutive measurements exceeds π, a correction
is applied by subtracting multiples of 2π to eliminate the
discontinuity. The unwrapped phase can be expressed as:
Φunwrapped(t) = Φ(t)+2πn, where n is an integer that adjusts
the phase to remove discontinuities. Due to phase unwrapping,
we can only estimate velocities without ambiguity when the
consecutive change in the phase values, ∆Φ, is less than 2π.

We derive an equation that captures the phase change
in static objects induced by the ego-vehicle’s motion as a
fourth-order polynomial in ego-speed, based on fundamental
kinematic laws. By solving the roots of this equation, we
achieve precise ego-speed estimation, even for static objects
located at oblique angles relative to the radar. More details
on the derivation are provided in [15]. For each static point j
from 1 to N , we directly obtain Φi,j at a time instant ti, where
i goes from 1 to Nc (number of transmitted chirps). For each
static point in a frame, we have four roots of the equation
for each chirp. Thus, we have N × Nc × 4 such roots in a
single frame. One root must be common across all the chirps,
as speed is a physical quantity. We compute all the roots for a
single frame and take the mode. Algorithm 2 summarizes the
entire implementation of translational speed estimaiton.

Algorithm 2 Translational Speed Calculation
1: Input: Range bin index, unwrapped phase values ϕi for N chirps
2: Output: Estimated ego-velocity
3: for each frame do
4: for each chirp do
5: Retrieve unwrapped phase values from the selected range bin
6: Solve 4th quadratic equation to find four possible roots
7: end for
8: Store all roots obtained across N chirps
9: end for

10: Identify the common root across chirps (majority root)
11: Compute the median of the common root
12: return Median root

III. DEMONSTRATION

This section presents the demonstration of the proposed
module and shows how to use it. Primarily we need to have a
hardware ego-vehicle setup and the backend software unit as
described below:

A. Hardware setup
We can use any of the following ego-vehicle platforms for

validating RadarTrack: (i) a UGV-based ego-vehicle, (ii) a
UAV platform, and (iii) a handheld stick setup, as illustrated
in Fig. 1(a). Each platform is equipped with a Jetson Nano
(4 GB RAM) serving as the primary processing unit, con-
nected to a DCA1000EVM data capture card paired with an
IWR1843BOOST EVM mmWave radar. For demonstration
purposes, the radar and data capture setup can be mounted
onto any of these platforms to function as the ego-vehicle.
Radar Configuration: The radar works in a frequency range
of 77-81 GHz. We configure the radar to a range resolution of
0.0429 meters, providing precise distance measurement. The
radial velocity resolution is set to 0.0496 m/s. The system
operates at 10 frames per second, with 182 chirps per frame
and 256 ADC samples per chirp, ensuring high temporal
resolution. We detailed the configuration parameters in Table I.



(a)

Detected Object
Peak

(b)

Fig. 1: (a) Radar mounted on different ego-vehicle platforms such as robots, handheld stick and on UAV, (b) Visualization tool
to showcase the estimated ego-speed in real-time.

TABLE I: Radar Configuration

Parameters Value
Number of TX Antennas 3
Number of RX Antennas 4
Frequency Slope (MHz/us) 60.012
ADC Samples per Chirp 256
Sample Rate (ksps) 4400
RX Gain (dB) 30
Chirp Duration (µs) 14

Parameters Value
Frame Duration (µs) 72
Idle Time (µs) 7
Ramp End Time(µs) 65
Chirps per Frame 182
Range Resolution (m) 0.041
Max Range (m) 10.99
Doppler Resolution (m/s) 0.0496

B. Software Setup

For computation, we employ a Jetson Nano running Ubuntu
18.04, equipped with a quad-core Intel Atom x5-Z8350 CPU
and 4 GB of RAM. The Jetson Nano connects to the
DCA1000EVM board via a 1 Gb Ethernet link. To configure
the mmWave radar attached to the DCA1000EVM, we first
use Texas Instruments’ mmWave Studio, a Windows-based tool
for radar setup and firmware flashing. After programming the
radar, we switch the Ethernet connection from the Windows
machine to the Jetson Nano. We have open-sourced our
implementation in GitHub [16], which one can clone and
generate the ego-speed estimates based on our phase-based
approach as well as state-of-the-art doppler based approach
(see Fig. 1(b)).

IV. CONCLUSION

In this demo, we introduced RadarTrack, a novel and
lightweight phase-based approach for ego-speed estimation
using a single-chip COTS mmWave radar. Unlike traditional
Doppler-based techniques, RadarTrack reliably operates even
in low-speed and dynamic environments where sub-doppler
effects pose significant challenges. From phase variations in
static reflectors, our method achieves robust and accurate
speed estimation while remaining computationally efficient
and suitable for embedded platforms such as the Jetson Nano.

ACKNOWLEDGMENT

This work has been supported by the Department of Sci-
ence and Technology (NGP Division) with funding approval
number NGP/GS-02/Sandip/IIT-K/WB/2023 (C), dated 09-01-
2024. The works of Soham Chakraborty and Soham Tripathy

are also supported by CHANAKYA Fellowship Program 2023
from the TIH Foundation for IoT & IoE, IIT Bombay, India.

REFERENCES

[1] E. Sie, X. Wu, H. Guo, and D. Vasisht, “Radarize: Enhancing radar slam
with generalizable doppler-based odometry,” in ACM MobiSys, 2024, pp.
331–344.

[2] C. X. Lu, M. R. U. Saputra, P. Zhao, Y. Almalioglu, P. P. De Gusmao,
C. Chen, K. Sun, N. Trigoni, and A. Markham, “milliego: single-chip
mmwave radar aided egomotion estimation via deep sensor fusion,” in
ACM SenSys, 2020, pp. 109–122.

[3] C. X. Lu, S. Rosa, P. Zhao, B. Wang, C. Chen, J. A. Stankovic,
N. Trigoni, and A. Markham, “See through smoke: robust indoor
mapping with low-cost mmwave radar,” in ACM MobiSys, 2020, pp.
14–27.

[4] S. H. Cen and P. Newman, “Precise ego-motion estimation with
millimeter-wave radar under diverse and challenging conditions,” in
IEEE ICRA, 2018, pp. 6045–6052.

[5] Q. Huang, Y. Liang, Z. Qiao, S. Shen, and H. Yin, “Less is more:
Physical-enhanced radar-inertial odometry,” in IEEE ICRA, 2024.

[6] S. Shen, M. Gowda, and R. Roy Choudhury, “Closing the gaps in inertial
motion tracking,” in ACM MobiCom, 2018, pp. 429–444.

[7] W. Lee, K. Eckenhoff, Y. Yang, P. Geneva, and G. Huang, “Visual-
inertial-wheel odometry with online calibration,” in IEEE/RSJ IROS,
2020, pp. 4559–4566.

[8] Y. Yang, P. Geneva, X. Zuo, and G. Huang, “Online imu intrinsic
calibration: Is it necessary?” 2020 Robotics: Science and Systems, 2020.

[9] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, “Vinet: Visual-
inertial odometry as a sequence-to-sequence learning problem,” in AAAI,
vol. 31, no. 1, 2017.

[10] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular
visual-inertial state estimator,” IEEE T-RO, vol. 34, no. 4, pp. 1004–
1020, 2018.

[11] Y. Lin and H. Caesar, “Icp-flow: Lidar scene flow estimation with ICP,”
in IEEE/CVF CVPR, 2024, pp. 15 501–15 511.

[12] A. Kramer, C. Stahoviak, A. Santamaria-Navarro, A.-A. Agha-
Mohammadi, and C. Heckman, “Radar-inertial ego-velocity estimation
for visually degraded environments,” in IEEE ICRA, 2020, pp. 5739–
5746.

[13] Y. Almalioglu, M. Turan, C. X. Lu, N. Trigoni, and A. Markham, “Milli-
rio: Ego-motion estimation with low-cost millimetre-wave radar,” IEEE
Sensors Journal, vol. 21, no. 3, pp. 3314–3323, 2020.

[14] E. Sie, Z. Liu, and D. Vasisht, “Batmobility: Towards flying without
seeing for autonomous drones,” in ACM MobiCom, 2023, pp. 1–16.

[15] A. Sen, S. Chakraborty, S. Tripathy, and S. Chakraborty, “Radar-
track: Enhancing ego-vehicle speed estimation with single-chip mmwave
radar,” arXiv preprint arXiv:2504.14495, 2025.

[16] “GitHub - arghasen10/radarTrack_visualizer: RadarTrack: Enhancing
Ego-Vehicle Speed Estimation with Single-chip mmWave Radar —
github.com,” https://github.com/arghasen10/radarTrack_visualizer, [Ac-
cessed April 30, 2025].


